Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spherical Harmonic method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spherical Harmonic method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spherical Harmonic method"
Snape-Jenkinson, C. J., S. Crozier und L. K. Forbes. „NMR shim coil design utilising a rapid spherical harmonic calculation method“. ANZIAM Journal 43, Nr. 3 (Januar 2002): 375–86. http://dx.doi.org/10.1017/s1446181100012578.
Der volle Inhalt der QuelleDoicu, Adrian, und Dmitry S. Efremenko. „Linearizations of the Spherical Harmonic Discrete Ordinate Method (SHDOM)“. Atmosphere 10, Nr. 6 (28.05.2019): 292. http://dx.doi.org/10.3390/atmos10060292.
Der volle Inhalt der QuelleKudlicki, Andrzej, Małgorzata Rowicka, Mirosław Gilski und Zbyszek Otwinowski. „An efficient routine for computing symmetric real spherical harmonics for high orders of expansion“. Journal of Applied Crystallography 38, Nr. 3 (13.05.2005): 501–4. http://dx.doi.org/10.1107/s0021889805007685.
Der volle Inhalt der QuelleCrowley, John W., und Jianliang Huang. „A least-squares method for estimating the correlated error of GRACE models“. Geophysical Journal International 221, Nr. 3 (09.03.2020): 1736–49. http://dx.doi.org/10.1093/gji/ggaa104.
Der volle Inhalt der QuelleSun, Huiyuan, Thushara D. Abhayapala und Prasanga N. Samarasinghe. „Time Domain Spherical Harmonic Processing with Open Spherical Microphones Recording“. Applied Sciences 11, Nr. 3 (25.01.2021): 1074. http://dx.doi.org/10.3390/app11031074.
Der volle Inhalt der QuelleDwivedi, Priyadarshini, Gyanajyoti Routray und Rajesh M. Hegde. „Spherical harmonics domain-based approach for source localization in presence of directional interference“. JASA Express Letters 2, Nr. 11 (November 2022): 114802. http://dx.doi.org/10.1121/10.0015243.
Der volle Inhalt der QuelleSHOJAEI, M. R., A. A. RAJABI und H. HASANABADI. „HYPER-SPHERICAL HARMONICS AND ANHARMONICS IN m-DIMENSIONAL SPACE“. International Journal of Modern Physics E 17, Nr. 06 (Juni 2008): 1125–30. http://dx.doi.org/10.1142/s0218301308010398.
Der volle Inhalt der QuelleYanagawa, Kazunori, Ayane Fujihira, Hideki Yamaguchi und Nozomu Yoshizawa. „Describing the characteristics of light field in architectural spaces using spherical harmonic function“. IOP Conference Series: Earth and Environmental Science 1099, Nr. 1 (01.11.2022): 012014. http://dx.doi.org/10.1088/1755-1315/1099/1/012014.
Der volle Inhalt der QuelleWang, Jian Qiang, Hao Yuan Chen und Yin Fu Chen. „The Analysis of the Associated Legendre Functions with Non-Integral Degree“. Applied Mechanics and Materials 130-134 (Oktober 2011): 3001–5. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.3001.
Der volle Inhalt der QuelleXiao-yong, Zhang, und Guo Ben-yu. „Spherical Harmonic–Generalized Laguerre Spectral Method for Exterior Problems“. Journal of Scientific Computing 27, Nr. 1-3 (19.01.2006): 523–37. http://dx.doi.org/10.1007/s10915-005-9056-6.
Der volle Inhalt der QuelleDissertationen zum Thema "Spherical Harmonic method"
RAYCHAUDHURI, ANJAN. „A Modification of Spherical Harmonic method and its application to transport problems“. Thesis, University of North Bengal, 1997. http://hdl.handle.net/123456789/585.
Der volle Inhalt der QuellePattnaik, Aliva. „Parallel Performance Analysis of The Finite Element-Spherical Harmonics Radiation Transport Method“. Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14069.
Der volle Inhalt der QuelleFERNANDES, ALMIR. „Estudo de um metodo para solucao da equacao de transporte monoenergetica e em geometria tridimensional pelo metodo de elementos finitos e pela“. reponame:Repositório Institucional do IPEN, 1991. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10256.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T13:59:10Z (GMT). No. of bitstreams: 1 04131.pdf: 2671874 bytes, checksum: f1aecab51efb7083cb98abad64e8c2ba (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Park, HyeongKae. „Coupled Space-Angle Adaptivity and Goal-Oriented Error Control for Radiation Transport Calculations“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13944.
Der volle Inhalt der QuelleCALDEIRA, ALEXANDRE D. „Solucoes Psubn para os problemas da moderacao e do calculo de celula em geometria plana“. reponame:Repositório Institucional do IPEN, 1999. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10730.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T13:56:29Z (GMT). No. of bitstreams: 1 06501.pdf: 3346863 bytes, checksum: c0335a4d0d89d17de7ff520ce20eae25 (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Juttu, Sreekanth. „A new approach for fast potential evaluation in N-body problems“. Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/351.
Der volle Inhalt der QuelleSankar, Maathangi. „A Hybrid Discrete Ordinates - Spherical Harmonics Method for Solution of the Radiative Transfer Equation in Multi-Dimensional Participating Media“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308244319.
Der volle Inhalt der QuelleBrunton, Alan P. „Multi-scale Methods for Omnidirectional Stereo with Application to Real-time Virtual Walkthroughs“. Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23552.
Der volle Inhalt der QuelleMarquez, Damian Jose Ignacio. „Multilevel acceleration of neutron transport calculations“. Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19731.
Der volle Inhalt der QuelleCommittee Chair: Stacey, Weston M.; Committee Co-Chair: de Oliveira, Cassiano R.E.; Committee Member: Hertel, Nolan; Committee Member: van Rooijen, Wilfred F.G.
Das, Nivedita. „Modeling three-dimensional shape of sand grains using Discrete Element Method“. [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002072.
Der volle Inhalt der QuelleBücher zum Thema "Spherical Harmonic method"
N, Phillips Timothy, und Institute for Computer Applications in Science and Engineering., Hrsg. On the coefficients of differentiated expansions of ultraspherical polynomials. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1989.
Den vollen Inhalt der Quelle finden1975-, Peccati Giovanni, Hrsg. Random fields on the sphere: Representation, limit theorems, and cosmological applications. Cambridge: Cambridge University Press, 2011.
Den vollen Inhalt der Quelle findenAUGMENTED SPHERICAL WAVE METHOD LECTURE. SPRINGER, 2013.
Den vollen Inhalt der Quelle findenThe Augmented Spherical Wave Method: A Comprehensive Treatment (Lecture Notes in Physics). Springer, 2007.
Den vollen Inhalt der Quelle findenLattman, Eaton E., Thomas D. Grant und Edward H. Snell. Shape Reconstructions from Small Angle Scattering Data. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199670871.003.0004.
Der volle Inhalt der QuelleBuchteile zum Thema "Spherical Harmonic method"
Lin, C. K., Neil Goldsman, C. H. Chang, Isaak Mayergoyz, Sheldon Aronowitz, Jeffrey Dong und Nadya Belova. „Extension of Spherical Harmonic Method to RF Transient Regime“. In Simulation of Semiconductor Processes and Devices 1998, 42–45. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6827-1_12.
Der volle Inhalt der QuelleGhosh, Mrityunjoy. „Solution of an Integro-Differential Equation by Double Interval Spherical Harmonic Method“. In Lecture Notes in Mechanical Engineering, 439–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0287-3_31.
Der volle Inhalt der QuelleYang, Zhigen, Seiji Manabe, Koichi Yokoyama, Takaaki Jike und Kosuke Heki. „Comprehensive Ocean Tide Loading Parameters of Sites in East Asia with Spherical Harmonic Method“. In International Association of Geodesy Symposia, 343–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03482-8_47.
Der volle Inhalt der QuelleVasicek, M., V. Sverdlov, J. Cervenka, T. Grasser, H. Kosina und S. Selberherr. „Transport in Nanostructures: A Comparative Analysis Using Monte Carlo Simulation, the Spherical Harmonic Method, and Higher Moments Models“. In Large-Scale Scientific Computing, 443–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12535-5_52.
Der volle Inhalt der QuelleJamet, O., J. Verdun, D. Tsoulis und N. Gonindard. „Assessment of a Numerical Method for Computing the Spherical Harmonic Coefficients of the Gravitational Potential of a Constant Density Polyhedron“. In Gravity, Geoid and Earth Observation, 437–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10634-7_58.
Der volle Inhalt der QuelleKuridan, Ramadan M. „Spherical Harmonics—The $${{{P}}}_{{{N}}}$$ Method“. In Graduate Texts in Physics, 61–97. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26932-5_3.
Der volle Inhalt der QuelleLiang, W. C., Y. J. Wu, K. Hennacy, S. Singh, N. Goldsman und I. Mayergoyz. „2-Dimensional Mosfet Analysis Including Impact Ionization by Self-Consistent Solution of the Boltzmann Transport and Poisson Equations Using a Generalized Spherical Harmonic Expansion Method“. In Hot Carriers in Semiconductors, 485–89. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_111.
Der volle Inhalt der QuelleGutting, Martin. „Fast Harmonic/Spherical Splines and Parameter Choice Methods“. In Handbuch der Geodäsie, 1–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-46900-2_106-1.
Der volle Inhalt der QuelleGutting, Martin. „Fast Harmonic/Spherical Splines and Parameter Choice Methods“. In Mathematische Geodäsie/Mathematical Geodesy, 537–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55854-6_106.
Der volle Inhalt der QuelleJekeli, Christopher. „Methods to Reduce Aliasing in Spherical Harmonic Analysis“. In International Association of Geodesy Symposia, 121–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61140-7_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spherical Harmonic method"
Xiao yong, Zhang, Sui Jiang Hua, Theodore E. Simos, George Psihoyios, Ch Tsitouras und Zacharias Anastassi. „Spherical Harmonic–Generalized Laguerre Function Mixed Spectral Method“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636998.
Der volle Inhalt der QuelleXiao-yong, Zhang, Guo Ben-yu, Theodore E. Simos und George Psihoyios. „Spherical Harmonic—Generalized Laguerre Spectral Method for Nonlinear Exterior Problems“. In INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE. AIP, 2008. http://dx.doi.org/10.1063/1.3037093.
Der volle Inhalt der QuelleThomas, Mark R. P., Jens Ahrens und Ivan Tashev. „A method for converting between cylindrical and spherical harmonic representations of sound fields“. In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6854498.
Der volle Inhalt der QuelleKalkur, Sachin N., Sandeep Reddy C. und Rajesh M. Hegde. „Joint source localization and separation in spherical harmonic domain using a sparsity based method“. In Interspeech 2015. ISCA: ISCA, 2015. http://dx.doi.org/10.21437/interspeech.2015-355.
Der volle Inhalt der QuelleFang Yanhong und Wu Bin. „An novel method of soft tissue haptic rendering based on the spherical harmonic representation“. In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5691762.
Der volle Inhalt der QuelleLi, Kang, Liangzhi Cao, Jianxin Miao, Haoyu Zhang und Tao Dai. „Neutronics Analysis of Fusion Blanket Based on the Spherical Harmonic Function and Finite Element Method“. In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-92622.
Der volle Inhalt der QuelleFaltinsen, Odd M., und Alexander N. Timokha. „Nonlinear Sloshing in a Spherical Tank“. In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10036.
Der volle Inhalt der QuelleMackowski, Daniel W. „Direct Simulation of Scattering and Absorption by Particle Deposits“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14615.
Der volle Inhalt der QuelleKessler, David A., Stephen B. Swanekamp, Steve Richardson, Paul E. Adamson und Lina Petrova. „A Discontinuous Galerkin Finite Element Method for a Class of Spherical Harmonic Expansions of the Boltzmann Equation“. In 2021 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2021. http://dx.doi.org/10.1109/icops36761.2021.9588543.
Der volle Inhalt der QuelleMahmood, Taofiqhasan, Md Amanullah Kabir Tonmoy, Chad Sevart, Yi Wang und Yue Ling. „Predicting Drop Dynamics in Sub-Critical Weber Number Regime: High-Fidelity Simulation and Data-Driven Modeling“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-116851.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Spherical Harmonic method"
Josef, John A. A simplified spherical harmonic method for coupled electron-photon transport calculations. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/459863.
Der volle Inhalt der QuelleJosef, J. A. A simplified spherical harmonic method for coupled electron-photon transport calculations. Office of Scientific and Technical Information (OSTI), Dezember 1997. http://dx.doi.org/10.2172/563320.
Der volle Inhalt der QuelleMorel, J. E., J. M. McGhee und T. Manteuffel. Parallel 3-D spherical-harmonics transport methods. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/515629.
Der volle Inhalt der QuelleSVITELMAN, Valentina, und Oleg DINARIEV. The method of spherical harmonics in rock microstructural geostatistics. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0048.
Der volle Inhalt der QuelleSmith, M. A., G. Palmiotti und E. E. Lewis. Fuel cycle methods : first-order spherical harmonics formulations capable of treating low density regions. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/821070.
Der volle Inhalt der Quelle