Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spectre de houle“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spectre de houle" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spectre de houle"
Caseau, P. „ETUDE THEORIQUE DE L'EXPLOITATION DES ENREGISTREMENTS DE HOULE“. Coastal Engineering Proceedings 1, Nr. 7 (29.01.2011): 8. http://dx.doi.org/10.9753/icce.v7.8.
Der volle Inhalt der QuelleCholodenko, Alan. „The Crypt, the Haunted House, of Cinema“. Cultural Studies Review 10, Nr. 2 (12.08.2013): 99–113. http://dx.doi.org/10.5130/csr.v10i2.3474.
Der volle Inhalt der QuelleNowak, M. A. „Leveraging high-resolution spectra to understand black hole spectra“. Astronomische Nachrichten 338, Nr. 2-3 (März 2017): 227–33. http://dx.doi.org/10.1002/asna.201713335.
Der volle Inhalt der QuelleAli, Mohsin, und Haewoon Nam. „Optimization of Spectrum Hole Utilization in Rayleigh Faded Cognitive Radio Networks“. International Journal of Signal Processing Systems 6, Nr. 1 (März 2018): 1–5. http://dx.doi.org/10.18178/ijsps.6.1.1-5.
Der volle Inhalt der QuelleLee, In‐Ja, John M. Hayes und Gerald J. Small. „Hole and antihole profiles in nonphotochemical hole‐burned spectra“. Journal of Chemical Physics 91, Nr. 6 (15.09.1989): 3463–69. http://dx.doi.org/10.1063/1.456875.
Der volle Inhalt der QuelleYou, Bei, und Xinwu Cao. „The black hole spins of quasars“. Proceedings of the International Astronomical Union 10, S312 (August 2014): 143–44. http://dx.doi.org/10.1017/s1743921315007747.
Der volle Inhalt der QuelleLynch, Jared. „Resurfacing Specters in the House of Media“. Digital Literature Review 1 (06.01.2014): 51–59. http://dx.doi.org/10.33043/dlr.1.0.51-59.
Der volle Inhalt der QuelleEilers, Anna–Christina, David W. Hogg, Bernhard Schölkopf, Daniel Foreman-Mackey, Frederick B. Davies und Jan–Torge Schindler. „A Generative Model for Quasar Spectra“. Astrophysical Journal 938, Nr. 1 (01.10.2022): 17. http://dx.doi.org/10.3847/1538-4357/ac8ead.
Der volle Inhalt der QuelleKwofie, Francis, Nuwan Undugodage D. Perera, Kaushalya S. Dahal, George P. Affadu-Danful, Koichi Nishikida und Barry K. Lavine. „Transmission Infrared Microscopy and Machine Learning Applied to the Forensic Examination of Original Automotive Paint“. Applied Spectroscopy 76, Nr. 1 (17.12.2021): 118–31. http://dx.doi.org/10.1177/00037028211057574.
Der volle Inhalt der QuelleSumitomo, Naoko, Hideki Saito, Jun Fukue und Kenya Watarai. „Relativistic Spectra of Hot Black-Hole Winds“. Publications of the Astronomical Society of Japan 61, Nr. 6 (25.12.2009): 1281–86. http://dx.doi.org/10.1093/pasj/61.6.1281.
Der volle Inhalt der QuelleDissertationen zum Thema "Spectre de houle"
Wang, Weili. „Remote sensing of swell and currents in coastal zone by HF radar“. Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0011/document.
Der volle Inhalt der QuelleNearshore marine environment contains many complex processes, but the lack of high-resolution data over a large area during a long time is often the primary obstacle to further research. High-frequency (HF) radar is a mean of remote sensing which obtains continuous near-real time sea surface information over a large area. Thus the study of inversion of marine parameters from HF radar data is very meaningful. Thisthesis makes use of a 13-month-long dataset collected by two phased array HF radar to investigate the characteristics of the sea echo signals, study the data processing and inversion methods, compute sea surface parameters and evaluate the accuracy of radarinversion of swell parameters.The thesis refers to the ground wave HF radar, whose radio waves interact with ocean by Bragg resonance scattering. The development history and applications of HF radar is introduced. The basic theory of electromagnetic wave is reviewed. The principles of inversion of sea surface current, wind direction and swell parameters are described. The feasibility of the swell parameter inversion is investigated. Based on theoretical analysis and statistical studies of a large number of samples, the thesis proposes a series of methods on raw signal processing and quality control, including the determination of the noise level, data averaging in space and time, the proper identification of spectral peaks, the peak width threshold, etc. Respecting the characteristics of different physical processes, inversions of current and wind use spectra collected every 20 min; inversion of swell parameters uses one-hour averaged spectra. The statistics of qualified spectra for swell parameter calculations are presented for both stations. A set of efficient, with a reduced computational cost, automatic computing programs are developed to do the processing and derive marine parameters. Radial current velocities are derived from single radar station. Current vector fields are obtained by combination of both stations. One-year mean flow field in the Iroise Sea is shown, together with the computation of vorticity and divergence. A one-month SeaSonde radar dataset off Qingdao is studied. One-month mean flow pattern together with vorticity and divergence are presented.Relative wind direction with respect to radar look direction is measured through ratio of Bragg peaks amplitudes. Different empirical models are employed to derive radar-inverted relative wind direction. Results show reasonable agreement with model estimations. Different directional distribution models are used to measure the spreading factor for the Iroise Sea. The thesis focuses on the study of swell parameters. Results are validated by buoy and wave model (WAVEWATCH III) data. The assessments show that the accuracy of swell frequency is very good, the accuracy of swell significant waveheight is reasonable, and the accuracy of relative swell direction is low.Consistency of measurements by both radar stations is verified by comparison between the two. This also supports the use of double samples to do the inversion. Use of two radars not only further improves the accuracy but also solves the ambiguity of relative swell direction from single station and gives the absolute wave direction to a certain precision. The thesis proposes a constant relative directionmethod to derive swell significant waveheight, based on the studies of radar integral equation and the inverted results of relative swell direction. This proposal is demonstrated to improve the agreement of radar inversion and buoy/model provided significant waveheight and increases significantly the number of samples. The thesis investigates the accuracy of swell parameters obtained by HF radar. Contributions of random errors in radar observations are quantified. Comparing the differences between radar and buoy/model estimations gives assessments of the contribution of radar intrinsic uncertainty and contribution of other factors
Drevard, Déborah. „Etude expérimentale et numérique de la propagation d'ondes de gravité en zone de déferlement“. Phd thesis, Université du Sud Toulon Var, 2006. http://tel.archives-ouvertes.fr/tel-00141744.
Der volle Inhalt der QuelleL'objectif de ce travail est d'étudier expérimentalement et numériquement la propagation et le déferlement
d'ondes de gravité.
La première partie, expérimentale, propose des méthodes de calcul, basées sur les houles de Stokes, pour la mesure d'ondes partiellement stationnaires à partir d'instruments de type électromagnétique (S4) ou
acoustique (ADV) donnant des mesures synchrones de vitesses et/ou de pression. Les influences du courant,
de la direction de propagation, de la profondeur d'immersion des appareils ainsi que des effets non
linéaires sont alors étudiés à partir de données en bassin et in situ.
La deuxième partie, numérique, consiste en la validation d'une méthode de suivi de surface libre de type
SL-VOF (Semi-Lagrangian Volume Of Fluid), insérée dans un code de calcul industriel (code EOLE de la
société Principia R&D). L'onde de gravité est modélisée par un soliton. L'étude de la propagation et du
déferlement du soliton est effectuée pour deux applications : sur une marche (discontinuité du fond) puis sur un fond de pente constante 1/15. L'évolution de la surface libre, son élévation et le champ de vitesses
sont alors comparés aux résultats expérimentaux.
Canard, Maxime. „Controlled generation of unidirectional irregular sea states in experimental and numerical wave tanks“. Electronic Thesis or Diss., Ecole centrale de Nantes, 2024. http://www.theses.fr/2024ECDN0001.
Der volle Inhalt der QuelleThe objective of this thesis is to improve the wave generation and qualification procedures in the context of ocean engineering studies. The framework is limited to unidirectional irregular sea states generated in experimental and numerical wave tanks. Experiments were carried out using the ECN facilities and numerical studies were performed using the nonlinear potential wave solver HOS-NWT developed by ECN. In the first part of the thesis, the problem of irregular wave propagation in wave tank environments is addressed from theoretical, experimental, and numerical points of view. Paticular attention is paid to the evolution in space of the wave spectrum and statistics. In addition, experimental uncertainties arestudied in detail. The second part of the thesis focuses on developing methods to better control the wave fields at any target position in the domain. First, a procedure focusing on the quality of the wave spectrum is studied. Then, facing the dependence of the wave statistics on the target location, a new procedure is developed and tested to better control the statistical distributions independently of the target location
Carobolante, Jean-Baptiste. „Vers un monde spectral : théorie d'une hantise de l'image à partir du cinéma de spectre (1998-2018)“. Electronic Thesis or Diss., Normandie, 2020. http://www.theses.fr/2020NORMC036.
Der volle Inhalt der QuelleThis thesis attempts to achieve two objectives: first, to produce a general analysis of contemporary cinema of spectre where we define its genesis with Ringu (Hideo Nakata, 1998). What distinguishes spectral films from ghost films is the fact that their patterns are intimately linked to technological, social and metaphysical doubts of our contemporary societies. The concept of spectre, defined throughout this research, is intrinsically linked to the history of art and the philosophy of the image and perception. This is how we arrive at the second objective: to propose a theory of our contemporary relationship to the image based on this cinematographic genre. The initial theoretical intuition is that we live in times where the image has a predominant political value, to the point of influencing action and that we can find, in the image itself, the material for thinking about this growing influence. Thus, the "spectral" cinema, as a cinema where the spectre is defined as "an invisible form which will do everything to make itself visible", is to us the very cinema where this power of the image and its part of incarnation are played out
Attal, Yoann. „Processeurs atomiques utilisant la propriété de creusement spectral : modélisation et application à l’analyse spectrale radiofréquence large bande sur porteuse optique“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS161/document.
Der volle Inhalt der QuelleThe Spectral Hole Burning property, found in some rare-earth ion-doped crystals at low temperature is particularly relevant for analogic processing of radiofrequency signals. Indeed, it enables processing functions to be programmed in the crystal’s absorption spectrum.Starting with the first demonstrations of a wideband radiofrequency spectrum analyser, we aim at improving its performances, which requires an accurate modelling of the light-matter interaction and all the perturbations arising from the upgrade in TRL (Technology Readiness Level). Therefore, we have developed a model and extended its validity domain to a broad variety of SHB-based protocols.We applied this model on a particular material, namely a Tm³ ⁺:YAG crystal. After measuring experimentally the relevant intrinsic parameters of this crystal, we applied our model to a protocol which is quite similar to the one of the spectrum analyser we aim at optimizing, namely the engraving of wideband spectral gratings. The comparison of our experimental results to the simulations from our model proved its validity.Finally we applied it to the exact case of the radiofrequency spectrum analyser. With the simulations, we determined how to improve its performances, and particularly increase the dynamic range with realistic experimental parameters
Miller, James Henry 1957. „Estimation of sea surface wave spectra using acoustic tomography“. Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/44595.
Der volle Inhalt der QuelleBibliography: p. 164-171.
Vita.
by James Henry Miller.
Sc.D.
Misra, Ranjeev. „The spectral characteristics of galactic black hole systems“. Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290618.
Der volle Inhalt der QuelleMonroy, Charles. „Simulation numérique de l'intéraction houle-structure en fluide visqueux par décomposition fonctionnelle“. Ecole centrale de Nantes, 2010. http://www.theses.fr/2010ECDN0033.
Der volle Inhalt der QuelleFunctional decomposition in the Navier-Stokes equations is a mathematical tool with takes advantage of the fact that the swell propagation and the evolution of the diffracted field from a body are two phenomena with different spatial scales. The principal unknowns of the problem are divided into an incident part representing the swell propagation and a diffracted part representing the perturbation due to the presence of the floating or submerged body. This decomposition is then introduced in the Reynolds-averaged Navier-Stokes equations. Potential flow theory (more precisely spectral methods) is used to compute the incident waves while viscous effects are taken into account by using a modified RANSE solver to obtain the diffracted field in the full domain. By using this approach it is possible to simulate various nonlinear incident waves in an efficient and accurate manner: regular wave trains, focused waves, irregular 2D or 3D sea states. The present work is a contribution to the developent of the SWENSE (Spectal Ware Explicit Navier-Stokes Equations) method and offers several validation cases in regular sea as well as in irregular sea. The limitations of the method in its current form are discussed, especially the over-breaking problem, and answers to them are provided
Traykovski, Peter. „Horizontal directional spectrum estimation of the Heard Island transmissions“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/38348.
Der volle Inhalt der QuelleIncludes bibliographical references.
by Peter Traykovski.
Ocean.E.
Bowers, Jeffrey Allan 1975. „Feasibility studies for quantum computation with spectral hole burning media“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50632.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 113-115).
In this thesis I consider a scheme for quantum computation in which quantum bits (qubits) are stored in individual spectral holes of an in homogeneously broadened medium, such as a cryogenically cooled crystal of Pr:Y2 SiO 3 . Qubits are transferred between spectral holes by virtue of mutual coupling of the atoms to a single quantized cavity mode, which allows for easy implementation of two bit gate operations. I show that laser induced adiabatic passage can be used to transfer an arbitrary symmetric ground state coherence between two many-atom spectral holes. However, it is not clear how to construct entangled states of qubits which are represented by many atoms, and therefore we require that each spectral hole contain only a single atom. The many-atom coherence transfer is still useful for constructing N-photon Fock states in the cavity. The coherence transfer is susceptible to spontaneous emission and cavity decay; the latter is the dominant decay channel for Pr:YSO. I have shown that the coherence transfer can proceed in a cavity dark state which is invulnerable to cavity decay, at the cost of becoming especially susceptible to spontaneous emission, and vice versa for coherence transfer with an atomic dark state. We can achieve the strong atom-cavity coupling necessary for coherence transfer by using extremely high-finesse optical resonators and by reducing the cavity mode volume. The latter is achieved by either reducing the total cavity volume as with a microcavity, or by tightly focusing the mode to a small active volume as with a near-concentric cavity. I consider how the presense of multiple degenerate cavity modes affects the two-atom coherence transfer, and find that the transfer is only exact when both atoms couple to the same mode. For the prototype Pr:YSO material, using a tightly focused mode in a centimeter-length cavity, we can couple as many as 400 qubits with a ground state coherence lifetime of about 1 s, which would allow us to apply as many as 20 sequential gate operations.
by Jeffrey Allan Bowers.
S.B.
M.Eng.
Bücher zum Thema "Spectre de houle"
artnoose. Ker-bloom!: Spectral Vessel. Berkeley, CA: The author, 2017.
Den vollen Inhalt der Quelle findenMoerner, W. E., Hrsg. Persistent Spectral Hole-Burning: Science and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83290-1.
Der volle Inhalt der QuelleMoerner, W. E. Persistent Spectral Hole-Burning: Science and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
Den vollen Inhalt der Quelle finden1953-, Moerner W. E., und Bjorklund G. C, Hrsg. Persistent spectral hole-burning: Science and application. Berlin: Springer-Verlag, 1988.
Den vollen Inhalt der Quelle findenO, Silʹd, und Khaller K. Ė, Hrsg. Zero-phonon lines and spectral hole burning in spectroscopy and photochemistry. Berlin: Springer-Verlag, 1988.
Den vollen Inhalt der Quelle findenPersistent, Spectral Hole-Burning: Science and Applications Topical Meeting (1991 Monterey Calif ). Persistent spectral hole-burning--science and applications: Summaries of papers presented at the Persistent Spectral Hole-Burning--Science and Applications Topical Meeting, September 26-28, 1991, Monterey, California. Washington, DC: The Society, 1991.
Den vollen Inhalt der Quelle findenPersistent, Spectral Hole-Burning: Science and Applications Topical Meeting (1991 Monterey Calif ). Persistent spectral hole-burning: Science and applications : summaries of papers presented at the Persistent Spectral Hole-Burning, Science and Applications Topical Meeting, September 26-28, 1991, Monterey, California. Washington, DC: The Society, 1991.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Final report for NASA RXTE AO-1 proposal: "Deep and monitoring observations of the Black Hole Candidates 1E 1740.7-2942 and GRS 1758-258". [Washington, DC: National Aeronautics and Space Administration, 1998.
Den vollen Inhalt der Quelle findenSild, Olev. Zero-Phonon Lines: And Spectral Hole Burning in Spectroscopy and Photochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
Den vollen Inhalt der Quelle findenSpectral Hole-Burning and Luminescence Line Narrowing: Science and Applications Topical Meeting (1992 Ascona, Switzerland). Spectral hole-burning and luminescence line narrowing, science and applications: Summaries of papers presented at the Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications Topical Meeting, September 14-18, 1992, Monte Verita, Ascona, Switzerland. Washington, DC: Optical Society of America, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Spectre de houle"
Tandy, Pippa. „Dream House“. In Spectral Spaces and Hauntings, 40–50. 1 [edition]. | New York: Routledge, 2017. | Series: Routledge research in cultural and media studies; 105: Routledge, 2017. http://dx.doi.org/10.4324/9781315719115-3.
Der volle Inhalt der QuelleGaudric, Alain, und Aude Couturier. „Macular Hole“. In Spectral Domain Optical Coherence Tomography in Macular Diseases, 267–91. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-3610-8_20.
Der volle Inhalt der QuelleMacfarlane, R. M., und R. M. Shelby. „Persistent Spectral Hole-Burning in Inorganic Materials“. In Topics in Current Physics, 127–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83290-1_4.
Der volle Inhalt der QuelleOsad’ko, Igor S. „Spectral Hole Burning in Inhomogeneous Optical Bands“. In Springer Series in Chemical Physics, 205–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05248-8_15.
Der volle Inhalt der QuelleManfredi, Carla. „“Little House in the Bush”: Specters of Vailima“. In Robert Louis Stevenson’s Pacific Impressions, 187–219. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98313-4_6.
Der volle Inhalt der QuelleChamberlin, Ralph V., Roland Böhmer und Ranko Richert. „Nonresonant Spectral Hole Burning in Liquids and Solids“. In Advances in Dielectrics, 127–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77574-6_5.
Der volle Inhalt der QuelleKikas, J. „Spectral Hole Burning (SHB): Scientific and Practical Applications“. In Zero-Phonon Lines, 89–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73638-4_6.
Der volle Inhalt der QuelleSildos, I., U. Bogner und A. Osvet. „Spectral Hole-Burning Study of Neutron-Irradiated Diamond“. In Springer Series in Solid-State Sciences, 515–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_201.
Der volle Inhalt der QuelleGilfanov, M., E. Churazov und R. Sunyaev. „X-ray Spectral Variability of Black Hole Binaries“. In Observational Evidence for Black Holes in the Universe, 319–40. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4750-7_23.
Der volle Inhalt der QuelleMasumoto, Yasuaki. „Persistent Spectral Hole Burning in Semiconductor Quantum Dots“. In Semiconductor Quantum Dots, 209–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05001-9_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spectre de houle"
Chevaller, Christophe, und Martin Sanchez. „Modélisation de la houle réelle appliquée au spectre de Pierson-Moskowitz“. In Journées Nationales Génie Côtier - Génie Civil. Editions Paralia, 1996. http://dx.doi.org/10.5150/jngcgc.1996.002-c.
Der volle Inhalt der QuelleKorotaev, O. N., I. P. Kolmakov, V. P. Karpov und M. F. Shchanov. „The High Pressure Effects in Optical Spectra of Impurity Crystals“. In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd58.
Der volle Inhalt der QuelleJaaniso, R., und H. Bill. „Room-Temperature Persistent Spectral Hole Burning in Sm2+:SrFCl0.5Br0.5“. In Persistent Spectral Hole Burning: Science and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.fa4.
Der volle Inhalt der QuelleBasché, Th, und W. E. Moerner. „Optical Spectra of Single Impurity Molecules in a Polymer: Spectral Diffusion and Persistent Spectral Hole-Burning“. In Persistent Spectral Hole Burning: Science and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.pd1.
Der volle Inhalt der QuelleAdamec, F., M. Ambroz, E. Brynda, J. Dian, M. Vacha und J. Hala. „Persistent Hole Burning Spectroscopy Applications On Phthalocyanine Langmuir-Blodgett Films“. In Persistent Spectral Hole Burning: Science and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.fe1.
Der volle Inhalt der QuelleGalaup, J. P., A. V. Veret-Lemarinier, S. Kulikov, S. Arabei, J. P. Boilot und F. Chaput. „Inorganic and Hybrid (organic-inorganic) Sol-Gel Glasses doped with Organic Molecules: Fluorescence Line Narrowing, Persistent Hole-Burning and Spectral Diffusion“. In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.fb3.
Der volle Inhalt der QuelleLyle, P., G. J. Small, T. J. DiMagno und J. R. Norris. „Marker Mode Structure in the Primary Donor State of Bacterial Reaction Centers“. In Persistent Spectral Hole Burning: Science and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pshb.1991.fe5.
Der volle Inhalt der QuellePolivka, T., D. Engst, J. Dian, P. Kroh, J. Pšenčík, M. Vácha, L. Nedbal, W. I. M. Vermaas und J. Hála. „Persistent Spectral Hole Burning In The Antenna Protein CP47 Of Synechocystis SP. Mutant H114Q“. In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd18.
Der volle Inhalt der QuelleMisawa, Kazuhiko, Takayoshi Kobayashi, Shinjiro Machida und Kazuyuki Horie. „Wavelength and polarization dependence of hole-burning properties in highly oriented J-aggregates“. In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd47.
Der volle Inhalt der QuelleGorokhovsky, A. A., A. Turukhin, R. R. Alfano und W. Phillips. „Spectral Hole Burning and Fluorescence Line Narrowing of Si Center in CVD Diamond“. In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd54.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Spectre de houle"
Moerner, W. E. Photon-Gated Persistent Spectral Hole-Burning. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada212689.
Der volle Inhalt der QuelleAlfano, R. R., und Anshel Gorokhovksy. Material for Spectral Hole Burning Storage. Fort Belvoir, VA: Defense Technical Information Center, Mai 1996. http://dx.doi.org/10.21236/ada309672.
Der volle Inhalt der QuelleChang, Hai Chou. Spectral hole burning studies of photosystem II. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/130613.
Der volle Inhalt der QuelleGillie, J. Spectral hole burning studies of Photosystem I. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6879252.
Der volle Inhalt der QuelleHutcheson, R. L., und R. Cone. Materials for Spectral Hole Burning Research. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, März 1994. http://dx.doi.org/10.21236/ada278480.
Der volle Inhalt der QuellePsaltis, Demetri. Large Scale Spectral Hole Burning Memory in Organic Materials. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada408171.
Der volle Inhalt der QuelleFarag, Ebraheem, Mathieu Renzo, Robert Farmer, Morgan Chidester und Francis Timmes. Resolving The Peak of The Black Hole Mass Spectrum. Office of Scientific and Technical Information (OSTI), Juli 2022. http://dx.doi.org/10.2172/1876778.
Der volle Inhalt der QuelleSaxena, R. Spectral Analysis of the Black Hole Candidate 4U 1630-47. Office of Scientific and Technical Information (OSTI), Februar 2004. http://dx.doi.org/10.2172/826725.
Der volle Inhalt der QuelleRebane, Aleksander. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada398192.
Der volle Inhalt der QuelleRebane, Aleksander. Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning. Fort Belvoir, VA: Defense Technical Information Center, Mai 2001. http://dx.doi.org/10.21236/ada389022.
Der volle Inhalt der Quelle