Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Specific protein.

Zeitschriftenartikel zum Thema „Specific protein“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Specific protein" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Sear, Richard P. „Specific protein–protein binding in many-component mixtures of proteins“. Physical Biology 1, Nr. 2 (29.04.2004): 53–60. http://dx.doi.org/10.1088/1478-3967/1/2/001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hunte, C. „Specific protein–lipid interactions in membrane proteins“. Biochemical Society Transactions 33, Nr. 5 (01.10.2005): 938. http://dx.doi.org/10.1042/bst20050938.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hunte, C. „Specific protein–lipid interactions in membrane proteins“. Biochemical Society Transactions 33, Nr. 5 (26.10.2005): 938–42. http://dx.doi.org/10.1042/bst0330938.

Der volle Inhalt der Quelle
Annotation:
Many membrane proteins selectively bind defined lipid species. This specificity has an impact on correct insertion, folding, structural integrity and full functionality of the protein. How are these different tasks achieved? Recent advances in structural research of membrane proteins provide new information about specific protein–lipid interactions. Tightly bound lipids in membrane protein structures are described and general principles of the binding interactions are deduced. Lipid binding is stabilized by multiple non-covalent interactions from protein residues to lipid head groups and hydrophobic tails. Distinct lipid-binding motifs have been identified for lipids with defined head groups in membrane protein structures. The stabilizing interactions differ between the electropositive and electronegative membrane sides. The importance of lipid binding for vertical positioning and tight integration of proteins in the membrane, for assembly and stabilization of oligomeric and multisubunit complexes, for supercomplexes, as well as for functional roles are pointed out.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Baldrich, Marcus, und Werner Goebel. „Rapid and efficient site-specific mutagenesis“. "Protein Engineering, Design and Selection" 3, Nr. 6 (1990): 563. http://dx.doi.org/10.1093/protein/3.6.563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Parsons, Helen L., John C. Earnshaw, Jane Wilton, Kevin S. Johnson, Paula A. Schueler, Walt Mahoney und John McCafferty. „Directing phage selections towards specific epitopes“. "Protein Engineering, Design and Selection" 9, Nr. 11 (1996): 1043–49. http://dx.doi.org/10.1093/protein/9.11.1043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jongen-Rêlo, Ana L., und Joram Feldon. „Specific neuronal protein“. Physiology & Behavior 76, Nr. 4-5 (August 2002): 449–56. http://dx.doi.org/10.1016/s0031-9384(02)00732-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Prasad Bahadur, Ranjit, Pinak Chakrabarti, Francis Rodier und Joël Janin. „A Dissection of Specific and Non-specific Protein–Protein Interfaces“. Journal of Molecular Biology 336, Nr. 4 (Februar 2004): 943–55. http://dx.doi.org/10.1016/j.jmb.2003.12.073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kusakabe, Takahiro, Kiyohisa Motoki, Yasushi Sugimoto, Yozo Takasaki und Katsuji Hori. „Human aldolase B: liver-specific properties of the isozyme depend on type B isozyme group-specific sequences“. "Protein Engineering, Design and Selection" 7, Nr. 11 (1994): 1387–93. http://dx.doi.org/10.1093/protein/7.11.1387.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tindbaek, Nikolaj, Allan Svendsen, Peter Rahbek Oestergaard und Henriette Draborg. „Engineering a substrate‐specific cold‐adapted subtilisin“. Protein Engineering, Design and Selection 17, Nr. 2 (Februar 2004): 149–56. http://dx.doi.org/10.1093/protein/gzh019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kumar, Challa V., Apinya Buranaprapuk und Jyotsna Thota. „Protein scissors: Photocleavage of proteins at specific locations“. Journal of Chemical Sciences 114, Nr. 6 (Dezember 2002): 579–92. http://dx.doi.org/10.1007/bf02708852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Paoni, Nicholas F., Alice M. Chow, Luis C. Peña, Bruce A. Keyt, Mark J. Zoller und William F. Bennett. „Making tissue-type plasminogen activator more fibrin specific“. "Protein Engineering, Design and Selection" 6, Nr. 5 (1993): 529–34. http://dx.doi.org/10.1093/protein/6.5.529.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Wingfield, Paul T., Robert J. Mattaliano, H. Robson MacDonald, Stewart Craig, G. Marius Clore, Angela M. Gronenborn und Ursula Schmeissner. „Recombinant-derived interleukin-1α stabilized against specific deamidation“. "Protein Engineering, Design and Selection" 1, Nr. 5 (1987): 413–17. http://dx.doi.org/10.1093/protein/1.5.413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Richter, Susanne A., Kay Stubenrauch, Hauke Lilie und Rainer Rudolph. „Polyionic fusion peptides function as specific dimerization motifs“. Protein Engineering, Design and Selection 14, Nr. 10 (Oktober 2001): 775–83. http://dx.doi.org/10.1093/protein/14.10.775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Nyikos, Lajos, Ágnes Simon, Péter Barabás und Julianna Kardos. „Ligand-specific conformations of an ionotropic glutamate receptor“. Protein Engineering, Design and Selection 15, Nr. 9 (September 2002): 717–20. http://dx.doi.org/10.1093/protein/15.9.717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jäger, Marcus, Xavier Michalet und Shimon Weiss. „Protein-protein interactions as a tool for site-specific labeling of proteins“. Protein Science 14, Nr. 8 (August 2005): 2059–68. http://dx.doi.org/10.1110/ps.051384705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jonczyk, P., und A. Nowicka. „Specific in vivo protein-protein interactions between Escherichia coli SOS mutagenesis proteins.“ Journal of bacteriology 178, Nr. 9 (1996): 2580–85. http://dx.doi.org/10.1128/jb.178.9.2580-2585.1996.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lawrence, David S., und Jinkui Niu. „Protein Kinase InhibitorsThe Tyrosine-Specific Protein Kinases“. Pharmacology & Therapeutics 77, Nr. 2 (Februar 1998): 81–114. http://dx.doi.org/10.1016/s0163-7258(97)00052-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Schmid, Stefan W., Waldemar Uhl, Anne Steinle, Bettina Rau, Christian Seiler und Markus W. Büchler. „Human pancreas-specific protein“. International Journal of Pancreatology 19, Nr. 3 (Juni 1996): 165–70. http://dx.doi.org/10.1007/bf02787364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Stein, Richard A. „Protein-Specific Discovery Strategies“. Genetic Engineering & Biotechnology News 34, Nr. 6 (15.03.2014): 1, 12, 13, 15. http://dx.doi.org/10.1089/gen.34.06.01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Parekh, R. B. „Site-specific protein glycosylation“. Advanced Drug Delivery Reviews 13, Nr. 3 (März 1994): 251–66. http://dx.doi.org/10.1016/0169-409x(94)90014-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ebke, Lindsey A., Satyabrata Sinha, Gayle J. T. Pauer und Stephanie A. Hagstrom. „Photoreceptor Compartment-Specific TULP1 Interactomes“. International Journal of Molecular Sciences 22, Nr. 15 (28.07.2021): 8066. http://dx.doi.org/10.3390/ijms22158066.

Der volle Inhalt der Quelle
Annotation:
Photoreceptors are highly compartmentalized cells with large amounts of proteins synthesized in the inner segment (IS) and transported to the outer segment (OS) and synaptic terminal. Tulp1 is a photoreceptor-specific protein localized to the IS and synapse. In the absence of Tulp1, several OS-specific proteins are mislocalized and synaptic vesicle recycling is impaired. To better understand the involvement of Tulp1 in protein trafficking, our approach in the current study was to physically isolate Tulp1-containing photoreceptor compartments by serial tangential sectioning of retinas and to identify compartment-specific Tulp1 binding partners by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Our results indicate that Tulp1 has two distinct interactomes. We report the identification of: (1) an IS-specific interaction between Tulp1 and the motor protein Kinesin family member 3a (Kif3a), (2) a synaptic-specific interaction between Tulp1 and the scaffold protein Ribeye, and (3) an interaction between Tulp1 and the cytoskeletal protein microtubule-associated protein 1B (MAP1B) in both compartments. Immunolocalization studies in the wild-type retina indicate that Tulp1 and its binding partners co-localize to their respective compartments. Our observations are compatible with Tulp1 functioning in protein trafficking in multiple photoreceptor compartments, likely as an adapter molecule linking vesicles to molecular motors and the cytoskeletal scaffold.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

De Rosa, Lucia, Aitziber L. Cortajarena, Alessandra Romanelli, Lynne Regan und Luca Domenico D'Andrea. „Site-specific protein double labeling by expressed protein ligation: applications to repeat proteins“. Org. Biomol. Chem. 10, Nr. 2 (2012): 273–80. http://dx.doi.org/10.1039/c1ob06397a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Baldwin, Jack E., Stephen L. Martin und John D. Sutherland. „Site-specific forced misincorporation mutagenesis using modified T7 DNA polymerase“. "Protein Engineering, Design and Selection" 4, Nr. 5 (1991): 579–84. http://dx.doi.org/10.1093/protein/4.5.579.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Casey, J. L., A. M. Sanalla, D. Tamvakis, C. Thalmann, E. L. Carroll, K. Parisi, A. M. Coley et al. „Peptides specific for Mycobacterium avium subspecies paratuberculosis infection: diagnostic potential“. Protein Engineering Design and Selection 24, Nr. 8 (13.06.2011): 589–96. http://dx.doi.org/10.1093/protein/gzr026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Daffu, Gurdip K., Patricia Lopez, Francine Katz, Michael Vinogradov, Chang-Guo Zhan, Donald W. Landry und Joanne Macdonald. „Sulfhydryl-specific PEGylation of phosphotriesterase cysteine mutants for organophosphate detoxification“. Protein Engineering Design and Selection 28, Nr. 11 (04.08.2015): 501–6. http://dx.doi.org/10.1093/protein/gzv036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Nicholson, Thomas B., und Clifford P. Stanners. „Specific inhibition of GPI-anchored protein function by homing and self-association of specific GPI anchors“. Journal of Cell Biology 175, Nr. 4 (13.11.2006): 647–59. http://dx.doi.org/10.1083/jcb.200605001.

Der volle Inhalt der Quelle
Annotation:
The functional specificity conferred by glycophosphatidylinositol (GPI) anchors on certain membrane proteins may arise from their occupancy of specific membrane microdomains. We show that membrane proteins with noninteractive external domains attached to the same carcinoembryonic antigen (CEA) GPI anchor, but not to unrelated neural cell adhesion molecule GPI anchors, colocalize on the cell surface, confirming that the GPI anchor mediates association with specific membrane domains and providing a mechanism for specific signaling. This directed targeting was exploited by coexpressing an external domain-defective protein with a functional protein, both with the CEA GPI anchor. The result was a complete loss of signaling capabilities (through integrin–ECM interaction) and cellular effect (differentiation blockage) of the active protein, which involved an alteration of the size of the microdomains occupied by the active protein. This work clarifies how the GPI anchor can determine protein function, while offering a novel method for its modulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Stolarski, Ryszard. „Thermodynamics of specific protein-RNA interactions.“ Acta Biochimica Polonica 50, Nr. 2 (30.06.2003): 297–318. http://dx.doi.org/10.18388/abp.2003_3688.

Der volle Inhalt der Quelle
Annotation:
Description of the recognition specificity between proteins and nucleic acids at the level of molecular interactions is one of the most challenging tasks in biophysics. It is key to understanding the course and control of gene expression and to the application of the thus acquired knowledge in chemotherapy. This review presents experimental results of thermodynamic studies and a discussion of the role of thermodynamics in formation and stability of functional protein-RNA complexes, with a special attention to the interactions involving mRNA 5' cap and cap-binding proteins in the initiation of protein biosynthesis in the eukaryotic cell. A theoretical framework for analysis of the thermodynamic parameters of protein-nucleic acid association is also briefly surveyed. Overshadowed by more spectacular achievements in structural studies, the thermodynamic investigations are of equal importance for full comprehension of biopolymers' activity in a quantitative way. In this regard, thermodynamics gives a direct insight into the energetic and entropic characteristics of complex macromolecular systems in their natural environment, aqueous solution, and thus complements the structural view derived from X-ray crystallography and multidimensional NMR. Further development of the thermodynamic approach toward interpretation of recognition and binding specificity in terms of molecular biophysics requires more profound contribution from statistical mechanics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Nalawansha, Dhanusha A., Ke Li, John Hines und Craig M. Crews. „Hijacking Methyl Reader Proteins for Nuclear-Specific Protein Degradation“. Journal of the American Chemical Society 144, Nr. 12 (21.03.2022): 5594–605. http://dx.doi.org/10.1021/jacs.2c00874.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Rose, Megan L. H., und Maxwell T. Hincke. „Protein constituents of the eggshell: eggshell-specific matrix proteins“. Cellular and Molecular Life Sciences 66, Nr. 16 (19.05.2009): 2707–19. http://dx.doi.org/10.1007/s00018-009-0046-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Glover, Claiborne V. C. „Sequence-specific protein-DNA recognition by transcriptional regulatory proteins“. Plant Molecular Biology Reporter 7, Nr. 3 (August 1989): 183–208. http://dx.doi.org/10.1007/bf02668686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Löwenadler, B., B. Nilsson, L. Abrahmsén, T. Moks, L. Ljungqvist, E. Holmgren, S. Paleus, S. Josephson, L. Philipson und M. Uhlén. „Production of specific antibodies against protein A fusion proteins.“ EMBO Journal 5, Nr. 9 (September 1986): 2393–98. http://dx.doi.org/10.1002/j.1460-2075.1986.tb04509.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Hemler, Martin E. „Specific tetraspanin functions“. Journal of Cell Biology 155, Nr. 7 (24.12.2001): 1103–8. http://dx.doi.org/10.1083/jcb.200108061.

Der volle Inhalt der Quelle
Annotation:
Relatively little attention has been given to the large family of abundantly expressed transmembrane proteins known as tetraspanins. Now, the importance of tetraspanins is strongly supported by emerging genetic evidence, coupled with new insights into the biochemistry and functions of tetraspanin protein complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Dan, Feng, und Zeng Zong-Hao. „Specific and Non-Specific Contacts in Protein Crystals“. Protein & Peptide Letters 11, Nr. 4 (01.08.2004): 361–66. http://dx.doi.org/10.2174/0929866043406959.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Janin, Joël. „Specific versus non-specific contacts in protein crystals“. Nature Structural Biology 4, Nr. 12 (Dezember 1997): 973–74. http://dx.doi.org/10.1038/nsb1297-973.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Gentzsch, Martina, und Widmar Tanner. „Protein-O-glycosylation in yeast: protein-specific mannosyltransferases“. Glycobiology 7, Nr. 4 (1997): 481–86. http://dx.doi.org/10.1093/glycob/7.4.481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Lyons, Alan, David J. King, Raymond J. Owens, Geoffrey T. Yarranton, Andrew Millican, Nigel R. Whittle und John R. Adair. „Site-specific attachment to recombinant antibodies via introduced surface cysteine residues“. "Protein Engineering, Design and Selection" 3, Nr. 8 (1990): 703–8. http://dx.doi.org/10.1093/protein/3.8.703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hong, S. H., Q. Hao und W. Maret. „Domain-specific fluorescence resonance energy transfer (FRET) sensors of metallothionein/thionein“. Protein Engineering, Design and Selection 18, Nr. 6 (23.05.2005): 255–63. http://dx.doi.org/10.1093/protein/gzi031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Milovnik, P., D. Ferrari, C. A. Sarkar und A. Pluckthun. „Selection and characterization of DARPins specific for the neurotensin receptor 1“. Protein Engineering Design and Selection 22, Nr. 6 (22.04.2009): 357–66. http://dx.doi.org/10.1093/protein/gzp011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Koide, A., J. Wojcik, R. N. Gilbreth, A. Reichel, J. Piehler und S. Koide. „Accelerating phage-display library selection by reversible and site-specific biotinylation“. Protein Engineering Design and Selection 22, Nr. 11 (08.09.2009): 685–90. http://dx.doi.org/10.1093/protein/gzp053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Arai, Tomonori, Masayoshi Uehata, Hiroyuki Akatsuka und Tsutomu Kamiyama. „A quantitative analysis to unveil specific binding proteins for bioactive compounds“. Protein Engineering, Design and Selection 26, Nr. 4 (23.12.2012): 249–54. http://dx.doi.org/10.1093/protein/gzs103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Hanioka, Nobumitsu, Kenneth Korzekwa und Frank J. Gonzalez. „Sequence requirements for cytochromes P450IIA1 and P450IIA2 catalytic activity: evidence for both specific and non-specific substrate binding interactions through use of chimeric cDNAs and cDNA expression“. "Protein Engineering, Design and Selection" 3, Nr. 7 (1990): 571–75. http://dx.doi.org/10.1093/protein/3.7.571.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Wouters-Tyrou, D., A. Martin-Ponthieu, N. Ledoux-Andula, M. Kouach, M. Jaquinod, J. A. Subirana und P. Sautière. „Squid spermiogenesis: molecular characterization of testis-specific pro-protamines“. Biochemical Journal 309, Nr. 2 (15.07.1995): 529–34. http://dx.doi.org/10.1042/bj3090529.

Der volle Inhalt der Quelle
Annotation:
Cuttlefish spermiogenesis is characterized by a two-step nuclear protein transition: histones-->spermatid-specific protein (protein T)-->sperm protamine (protein Sp). A similar situation can be observed in another Cephalopod species, the squid Loligo pealeii. The protein T from Loligo consists of two structural variants, T1 and T2 (molecular masses: 10788 and 10791 Da respectively), phosphorylated to different degrees (2-6 phosphate groups). The primary structures of these two variants and of the protamine variant Sp2 were established from sequence analysis and mass spectrometric data of the proteins and their fragments. T1 and T2 are closely related proteins of 79 residues. The complete structural identity of the C-terminal domain (residues 22-79) of protein T2 with the sperm protamine Sp2 (molecular mass 8562 Da, 58 residues) strongly suggests that the testis-specific protein T2 is indeed the precursor of the protamine. The transition between the precursor protein T and protein Sp results from a hydrolytic cleavage similar to that found in many proteins that are synthesized as precursors. The processing mechanism involves the specific cleavage of a Gly-Arg bond in the sequence Met/Leu18-Lys-Gly-Gly-Arg-Arg23. Furthermore, the study provides molecular evidence on the taxonomic relationship between Loligo and Sepia.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Best, Robert B., Wenwei Zheng und Jeetain Mittal. „Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association“. Journal of Chemical Theory and Computation 10, Nr. 11 (16.10.2014): 5113–24. http://dx.doi.org/10.1021/ct500569b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Jonczyk, Piotr, Adrianna Nowicka und Iwona J. Fijalkowska. „P III B.4 Specific protein-protein interactions between E. coll DNA replication proteins“. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 379, Nr. 1 (September 1997): S22. http://dx.doi.org/10.1016/s0027-5107(97)82666-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Strandmann, E. P. v., C. Zoidl, H. Nakhei, B. Holewa, R. P. v. Strandmann, P. Lorenz, L. Klein-Hitpass und G. U. Ryffel. „A highly specific and sensitive monoclonal antibody detecting histidine-tagged recombinant proteins“. Protein Engineering Design and Selection 8, Nr. 7 (01.07.1995): 733–35. http://dx.doi.org/10.1093/protein/8.7.733.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Shukla, G. S., und D. N. Krag. „Cancer cell-specific internalizing ligands from phage displayed -lactamase-peptide fusion libraries“. Protein Engineering Design and Selection 23, Nr. 6 (10.03.2010): 431–40. http://dx.doi.org/10.1093/protein/gzq013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Nisbet, R. M., J. Nigro, K. Breheney, J. Caine, M. K. Hattarki und S. D. Nuttall. „Central amyloid- -specific single chain variable fragment ameliorates A aggregation and neurotoxicity“. Protein Engineering Design and Selection 26, Nr. 10 (13.06.2013): 571–80. http://dx.doi.org/10.1093/protein/gzt025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Barinka, Cyril, Jakub Ptacek, Antonia Richter, Zora Novakova, Volker Morath und Arne Skerra. „Selection and characterization of Anticalins targeting human prostate-specific membrane antigen (PSMA)“. Protein Engineering Design and Selection 29, Nr. 3 (21.01.2016): 105–15. http://dx.doi.org/10.1093/protein/gzv065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Gunneriusson, E., K. Nord, M. Uhlén und P. Å. Nygren. „Affinity maturation of a Taq DNA polymerase specific affibody by helix shuffling“. Protein Engineering, Design and Selection 12, Nr. 10 (Oktober 1999): 873–78. http://dx.doi.org/10.1093/protein/12.10.873.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Gould, Christine, und Chung F. Wong. „Designing specific protein kinase inhibitors:“. Pharmacology & Therapeutics 93, Nr. 2-3 (Februar 2002): 169–78. http://dx.doi.org/10.1016/s0163-7258(02)00186-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie