Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Specific protein/RNA recognition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Specific protein/RNA recognition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Specific protein/RNA recognition"
Stolarski, Ryszard. „Thermodynamics of specific protein-RNA interactions.“ Acta Biochimica Polonica 50, Nr. 2 (30.06.2003): 297–318. http://dx.doi.org/10.18388/abp.2003_3688.
Der volle Inhalt der QuelleShen, Cuicui, Xiang Wang, Yexing Liu, Quanxiu Li, Zhao Yang, Nieng Yan, Tingting Zou und Ping Yin. „Specific RNA Recognition by Designer Pentatricopeptide Repeat Protein“. Molecular Plant 8, Nr. 4 (April 2015): 667–70. http://dx.doi.org/10.1016/j.molp.2015.01.001.
Der volle Inhalt der QuelleQian, Kaiyue, Mengyu Li, Junchao Wang, Min Zhang und Mingzhu Wang. „Structural basis for mRNA recognition by human RBM38“. Biochemical Journal 477, Nr. 1 (10.01.2020): 161–72. http://dx.doi.org/10.1042/bcj20190652.
Der volle Inhalt der QuelleSpiridonova, V. A. „Molecular recognition elements - DNA/RNA-aptamers to proteins“. Biomeditsinskaya Khimiya 56, Nr. 6 (2010): 639–56. http://dx.doi.org/10.18097/pbmc20105606639.
Der volle Inhalt der QuellePérez-Cano, Laura, und Juan Fernández-Recio. „Dissection and prediction of RNA-binding sites on proteins“. BioMolecular Concepts 1, Nr. 5-6 (01.12.2010): 345–55. http://dx.doi.org/10.1515/bmc.2010.037.
Der volle Inhalt der QuelleHaynes, S. R., M. T. Cooper, S. Pype und D. T. Stolow. „Involvement of a tissue-specific RNA recognition motif protein in Drosophila spermatogenesis.“ Molecular and Cellular Biology 17, Nr. 5 (Mai 1997): 2708–15. http://dx.doi.org/10.1128/mcb.17.5.2708.
Der volle Inhalt der QuelleShi, H., B. E. Hoffman und J. T. Lis. „A specific RNA hairpin loop structure binds the RNA recognition motifs of the Drosophila SR protein B52.“ Molecular and Cellular Biology 17, Nr. 5 (Mai 1997): 2649–57. http://dx.doi.org/10.1128/mcb.17.5.2649.
Der volle Inhalt der QuelleKress, Tracy L., Young J. Yoon und Kimberly L. Mowry. „Nuclear RNP complex assembly initiates cytoplasmic RNA localization“. Journal of Cell Biology 165, Nr. 2 (19.04.2004): 203–11. http://dx.doi.org/10.1083/jcb.200309145.
Der volle Inhalt der QuelleNarayanan, Krishna, Chun-Jen Chen, Junko Maeda und Shinji Makino. „Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal“. Journal of Virology 77, Nr. 5 (01.03.2003): 2922–27. http://dx.doi.org/10.1128/jvi.77.5.2922-2927.2003.
Der volle Inhalt der QuelleSchneemann, Anette, und Dawn Marshall. „Specific Encapsidation of Nodavirus RNAs Is Mediated through the C Terminus of Capsid Precursor Protein Alpha“. Journal of Virology 72, Nr. 11 (01.11.1998): 8738–46. http://dx.doi.org/10.1128/jvi.72.11.8738-8746.1998.
Der volle Inhalt der QuelleDissertationen zum Thema "Specific protein/RNA recognition"
Miranda, Rafael. „Sequence Specific RNA Recognition by Pentatricopeptide Repeat Proteins: Beyond the PPR Code“. Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23135.
Der volle Inhalt der Quelle10000-01-01
Zanier, Katia. „Regulation of histone gene expression : solution structure determination by NMR of the 3' histone mRNA hairpin and implications for specific protein-RNA recognition“. Thesis, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269984.
Der volle Inhalt der QuelleRamos, Andres. „NMR studies of specificity in RNA-protein recognition“. Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625038.
Der volle Inhalt der QuelleChan, Yin-tung Crystal, und 陳燕彤. „Demonstration of specific physical interaction between CHOP mRNA and intracellular proteins“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47169369.
Der volle Inhalt der Quellepublished_or_final_version
Biochemistry
Master
Master of Philosophy
Davies, Holly Gibs. „MSY4, a sequence-specific RNA binding protein expressed during mouse spermatogenesis /“. Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/10307.
Der volle Inhalt der QuelleGiorgini, Flaviano. „Functional analysis of the murine sequence-specific RNA binding protein MSY4 /“. Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10293.
Der volle Inhalt der QuelleYoung, David James, und n/a. „The recognition of stop codons by the decoding release factors“. University of Otago. Department of Biochemistry, 2009. http://adt.otago.ac.nz./public/adt-NZDU20090603.104834.
Der volle Inhalt der QuelleCattelin, Céline. „Exploration de la diversité des protéines à solénoïdes alpha, régulatrices de l'expression des gènes des organites dans les lignées eucaryotes photosynthétiques et étude de la dynamique conformationnelle des protéines à "PentatricoPeptide Repeats"“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS158.
Der volle Inhalt der QuelleIn Archaeplastida (photosynthetic eukaryotes that acquired a chloroplast following endosymbiosis with an ancestral cyanobacterium) the chloroplast and mitochondrial genomes of green algae and land plants are regulated post-transcriptionally, mainly by alpha-solenoid proteins encoded in the nucleus. These nuclear factors are composed of degenerate repeat motifs (PPR and OPR proteins, respectively pentatricopeptide repeat and octatricopeptide repeats) that interact specifically with part of their target RNA sequence and form large families of paralogs. PPR proteins are very abundant in terrestrial plants while OPRs are abundant in green algae. These differential expansions, in parallel with the evolution of RNA metabolism in organelles, may reflect genetic adaptations that preserve phototrophy under different conditions and ecological niches. In other Archaeplastids (red algae and Glaucophytes) and in eukaryotes that originate from endosymbiosis with an ancestral microalga such as the Diatoms, the regulation of organelle genomes remains poorly explored. A first objective of my thesis was to describe the diversity and evolutionary dynamics of known or candidate alpha-solenoid proteins for the regulation of organelle genome expression in all photosynthetic eukaryotes. To identify them, I developed an approach that combines distant sequence homology detection and sequence similarity independent classification. I validated this approach by finding and completing the known OPR and PPR families in the model species Chlamydomonas reinhardtii and Arabidopsis thaliana. I showed that OPR expansions were restricted within Chlorophytes and that outside of green algae and land plants, PPR and OPR proteins were few in number, suggesting that other players in the regulation of organelle genome expression remain to be discovered. I also identified several dozen other families of organelle-addressed alpha-solenoid proteins in all the proteomes studied, some of which have as yet unknown functions and whose experimental characterisation in model organisms would be relevant. In a second step, I used molecular dynamics approaches to better understand the affinity and specificity of binding between PPRs and their target RNAs. In particular, I studied the dynamics of the repeat motifs and the geometry of the nucleotide binding sites as a function of their position in the PPR motif sequence, including the effects of the number of repeats and the presence or absence of N- and C-terminal domains, in addition to the evolution of the overall conformation of the protein. Our results suggest the role of PPR protein flexibility, both at the protein and motif level, in binding to its RNA target and its relevance to the affinity and specificity of nucleotide recognition
Bronicki, Lucas M. „Characterization of Multiple Exon 1 Variants and Neuron-specific Transcriptional Control of Mammalian HuD“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23682.
Der volle Inhalt der QuelleOberstrass, Florian Christophe. „Novel modes of protein-RNA recognition in post-transcriptional gene regulation studied by NMR spectroscopy“. kostenfrei kostenfrei, 2007. http://e-collection.ethbib.ethz.ch/view/eth:30123.
Der volle Inhalt der QuelleBücher zum Thema "Specific protein/RNA recognition"
Steitz, Thomas A. Structural studies of protein-nucleic acid interaction: Thesources of sequence-specific binding. Cambridge: Cambridge University Press, 1993.
Den vollen Inhalt der Quelle findenSteitz, Thomas A. Structural studies of protein-nucleic acid interaction: The sources of sequence-specific binding. New York, NY, USA: Cambridge University Press, 1993.
Den vollen Inhalt der Quelle findenDar, Arvin Christopher. Catalytic switching and substrate recognition mechanisms of the RNA dependent protein kinase PKR. 2006.
Den vollen Inhalt der Quelle findenRecognition of Carbohydrates in Biological Systems, Part B: Specific Applications, Volume 363 (Methods in Enzymology). Academic Press, 2003.
Den vollen Inhalt der Quelle findenAdler, M. Properties and potential of protein–DNA conjugates for analytic applications. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.25.
Der volle Inhalt der QuelleWalsh, Bruce, und Michael Lynch. Changes in Quantitative Traits Over Time. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830870.003.0001.
Der volle Inhalt der QuelleByrne, John H., Hrsg. The Oxford Handbook of Invertebrate Neurobiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190456757.001.0001.
Der volle Inhalt der QuelleProut, Jeremy, Tanya Jones und Daniel Martin. Core topics in intensive care medicine. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199609956.003.0020.
Der volle Inhalt der QuelleKirchman, David L. Elements, biochemicals, and structures of microbes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0002.
Der volle Inhalt der QuelleWalsh, Bruce, und Michael Lynch. Evolution and Selection of Quantitative Traits. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830870.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Specific protein/RNA recognition"
Rhodes, Daniela. „Protein-DNA Recognition“. In RNA Biochemistry and Biotechnology, 123–26. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4485-8_8.
Der volle Inhalt der QuelleTravers, Andrew. „DNA-protein interactions: sequence specific recognition“. In DNA-Protein Interactions, 52–86. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1480-6_3.
Der volle Inhalt der QuelleMarmier-Gourrier, Nathalie, Audrey Vautrin, Christiane Branlant und Isabelle Behm-Ansmant. „Analysis of Site-Specific RNA-Protein Interactions“. In Alternative pre-mRNA Splicing, 342–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527636778.ch32.
Der volle Inhalt der QuelleZheng, Fan, und Gevorg Grigoryan. „Design of Specific Peptide–Protein Recognition“. In Methods in Molecular Biology, 249–63. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3569-7_15.
Der volle Inhalt der QuelleBell, Thomas J., und James Eberwine. „Live Cell Genomics: RNA Exon-Specific RNA-Binding Protein Isolation“. In Methods in Molecular Biology, 457–68. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2806-4_31.
Der volle Inhalt der QuelleLiang, Xue-Hai, Wen Shen und Stanley T. Crooke. „Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames“. In RNA Activation, 129–46. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4310-9_9.
Der volle Inhalt der QuelleDraper, David E., Graeme L. Conn, Apostolos G. Gittis, Debraj Guhathakurta, Eaton E. Lattman und Luis Reynaldo. „RNA Tertiary Structure and Protein Recognition in an L11-RNA Complex“. In The Ribosome, 105–14. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818142.ch11.
Der volle Inhalt der QuelleVarani, Gabriele, Peter Bayer, Paul Cole, Andres Ramos und Luca Varani. „RNA Structure and RNA-Protein Recognition During Regulation of Eukaryotic Gene Expression“. In RNA Biochemistry and Biotechnology, 195–216. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4485-8_15.
Der volle Inhalt der QuelleMunschauer, Mathias. „Revealing Cell-Type Specific Differences in Protein Occupancy on RNA“. In High-Resolution Profiling of Protein-RNA Interactions, 73–88. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16253-9_4.
Der volle Inhalt der QuelleSharma, Shalini. „Isolation of a Sequence-Specific RNA Binding Protein, Polypyrimidine Tract Binding Protein, Using RNA Affinity Chromatography“. In Methods in Molecular Biology, 1–8. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-475-3_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Specific protein/RNA recognition"
Schwartz, B. S., und M. C. Monroe. „INCREASED SECRETION OF A FIBRINOLYTIC INHIBITOR BY HUMAN MONONUCLEAR LEUKOCYTES PARALLELS THE PR0COAGULANT RESPONSE TO SPECIFIC ANTIGEN“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644384.
Der volle Inhalt der QuelleNguyen, Thai Huu, und Qiao Lin. „An Aptamer-Functionalized Microfluidic Platform for Biomolecular Purification and Sensing“. In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82142.
Der volle Inhalt der QuelleWang, Tong, Jianxin Xue und Yi Du. „A Method For The RNA-Protein Complexes Recognition“. In ICCIR 2021: 2021 International Conference on Control and Intelligent Robotics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3473714.3473756.
Der volle Inhalt der QuelleZeiler, Brian N., Burt V. Bronk und Abraham Grossman. „Improved approach to RNA and protein recognition for pathogen detection“. In AeroSense 2000, herausgegeben von Patrick J. Gardner. SPIE, 2000. http://dx.doi.org/10.1117/12.394055.
Der volle Inhalt der QuelleLiu, Zhi-Ping. „Systematic identification of local structure binding motifs in protein-RNA recognition“. In 2014 8th International Conference on Systems Biology (ISB). IEEE, 2014. http://dx.doi.org/10.1109/isb.2014.6990735.
Der volle Inhalt der QuelleChrysostomou, Charalambos, Huseyin Seker, Nizamettin Aydin und Parvez I. Haris. „Complex Resonant Recognition Model in analysing Influenza a virus subtype protein sequences“. In Emerging Technologies for Patient Specific Healthcare. 2010 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB 2010). IEEE, 2010. http://dx.doi.org/10.1109/itab.2010.5687621.
Der volle Inhalt der QuelleZheng, Ying, und Wilson S. Meng. „Polycation Coated Polymeric Particles as Vehicles of RNA Delivery Into Immune Cells“. In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3714.
Der volle Inhalt der QuelleZhao, Guijun, Matthew B. Carson und Hui Lu. „Prediction of Specific Protein-DNA Recognition by Knowledge-based Two-body and Three-body Interaction Potentials“. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353467.
Der volle Inhalt der Quelle„Allele specific recognition of the Magnaporthe oryzae effector AVR Pita by the unconventional rice resistance protein Ptr“. In IS-MPMI Congress. IS-MPMI, 2023. http://dx.doi.org/10.1094/ismpmi-2023-34.
Der volle Inhalt der QuelleLian, Weibin, Hongzhi Xu, Jianlin Ren, Changsheng Yan und Yifan Lian. „IDDF2020-ABS-0100 Long intergenic non-protein coding RNA 01446 facilitates the proliferation and metastasis of gastric cancer cells through interacting with the histone lysine-specific demethylase LSD1“. In Abstracts of the International Digestive Disease Forum (IDDF), 22–23 November 2020, Hong Kong. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2020. http://dx.doi.org/10.1136/gutjnl-2020-iddf.21.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Specific protein/RNA recognition"
Loebenstein, Gad, William Dawson und Abed Gera. Association of the IVR Gene with Virus Localization and Resistance. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7604922.bard.
Der volle Inhalt der QuelleRafaeli, Ada, und Russell Jurenka. Molecular Characterization of PBAN G-protein Coupled Receptors in Moth Pest Species: Design of Antagonists. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7593390.bard.
Der volle Inhalt der QuelleCitovsky, Vitaly, und Yedidya Gafni. Suppression of RNA Silencing by TYLCV During Viral Infection. United States Department of Agriculture, Dezember 2009. http://dx.doi.org/10.32747/2009.7592126.bard.
Der volle Inhalt der QuelleEshed, Yuval, und Sarah Hake. Exploring General and Specific Regulators of Phase Transitions for Crop Improvement. United States Department of Agriculture, November 2012. http://dx.doi.org/10.32747/2012.7699851.bard.
Der volle Inhalt der QuelleMawassi, Munir, und Valerian Dolja. Role of RNA Silencing Suppression in the Pathogenicity and Host Specificity of the Grapevine Virus A. United States Department of Agriculture, Januar 2010. http://dx.doi.org/10.32747/2010.7592114.bard.
Der volle Inhalt der QuelleDolja, Valerian V., Amit Gal-On und Victor Gaba. Suppression of Potyvirus Infection by a Closterovirus Protein. United States Department of Agriculture, März 2002. http://dx.doi.org/10.32747/2002.7580682.bard.
Der volle Inhalt der QuelleGafni, Yedidya, Moshe Lapidot und Vitaly Citovsky. Dual role of the TYLCV protein V2 in suppressing the host plant defense. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7597935.bard.
Der volle Inhalt der QuelleAvni, Adi, und Gitta L. Coaker. Proteomic investigation of a tomato receptor like protein recognizing fungal pathogens. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600030.bard.
Der volle Inhalt der QuelleDubcovsky, Jorge, Tzion Fahima, Ann Blechl und Phillip San Miguel. Validation of a candidate gene for increased grain protein content in wheat. United States Department of Agriculture, Januar 2007. http://dx.doi.org/10.32747/2007.7695857.bard.
Der volle Inhalt der QuelleSavaldi-Goldstein, Sigal, und Todd C. Mockler. Precise Mapping of Growth Hormone Effects by Cell-Specific Gene Activation Response. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7699849.bard.
Der volle Inhalt der Quelle