Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Specific protein“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Specific protein" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Specific protein"
Sear, Richard P. „Specific protein–protein binding in many-component mixtures of proteins“. Physical Biology 1, Nr. 2 (29.04.2004): 53–60. http://dx.doi.org/10.1088/1478-3967/1/2/001.
Der volle Inhalt der QuelleHunte, C. „Specific protein–lipid interactions in membrane proteins“. Biochemical Society Transactions 33, Nr. 5 (01.10.2005): 938. http://dx.doi.org/10.1042/bst20050938.
Der volle Inhalt der QuelleHunte, C. „Specific protein–lipid interactions in membrane proteins“. Biochemical Society Transactions 33, Nr. 5 (26.10.2005): 938–42. http://dx.doi.org/10.1042/bst0330938.
Der volle Inhalt der QuelleBaldrich, Marcus, und Werner Goebel. „Rapid and efficient site-specific mutagenesis“. "Protein Engineering, Design and Selection" 3, Nr. 6 (1990): 563. http://dx.doi.org/10.1093/protein/3.6.563.
Der volle Inhalt der QuelleParsons, Helen L., John C. Earnshaw, Jane Wilton, Kevin S. Johnson, Paula A. Schueler, Walt Mahoney und John McCafferty. „Directing phage selections towards specific epitopes“. "Protein Engineering, Design and Selection" 9, Nr. 11 (1996): 1043–49. http://dx.doi.org/10.1093/protein/9.11.1043.
Der volle Inhalt der QuelleJongen-Rêlo, Ana L., und Joram Feldon. „Specific neuronal protein“. Physiology & Behavior 76, Nr. 4-5 (August 2002): 449–56. http://dx.doi.org/10.1016/s0031-9384(02)00732-1.
Der volle Inhalt der QuellePrasad Bahadur, Ranjit, Pinak Chakrabarti, Francis Rodier und Joël Janin. „A Dissection of Specific and Non-specific Protein–Protein Interfaces“. Journal of Molecular Biology 336, Nr. 4 (Februar 2004): 943–55. http://dx.doi.org/10.1016/j.jmb.2003.12.073.
Der volle Inhalt der QuelleKusakabe, Takahiro, Kiyohisa Motoki, Yasushi Sugimoto, Yozo Takasaki und Katsuji Hori. „Human aldolase B: liver-specific properties of the isozyme depend on type B isozyme group-specific sequences“. "Protein Engineering, Design and Selection" 7, Nr. 11 (1994): 1387–93. http://dx.doi.org/10.1093/protein/7.11.1387.
Der volle Inhalt der QuelleTindbaek, Nikolaj, Allan Svendsen, Peter Rahbek Oestergaard und Henriette Draborg. „Engineering a substrate‐specific cold‐adapted subtilisin“. Protein Engineering, Design and Selection 17, Nr. 2 (Februar 2004): 149–56. http://dx.doi.org/10.1093/protein/gzh019.
Der volle Inhalt der QuelleKumar, Challa V., Apinya Buranaprapuk und Jyotsna Thota. „Protein scissors: Photocleavage of proteins at specific locations“. Journal of Chemical Sciences 114, Nr. 6 (Dezember 2002): 579–92. http://dx.doi.org/10.1007/bf02708852.
Der volle Inhalt der QuelleDissertationen zum Thema "Specific protein"
Rubin, Jonathan. „Ion-specific and water-mediated effects on protein physical stability“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47587.
Der volle Inhalt der QuelleGuelev, Vladimir Metodiev. „Peptide-based polyintercalators as sequence-specific DNA binding agents /“. Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008346.
Der volle Inhalt der QuelleDavies, Holly Gibs. „MSY4, a sequence-specific RNA binding protein expressed during mouse spermatogenesis /“. Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/10307.
Der volle Inhalt der QuelleLucas, Olivier. „Molecular and systemic functions of the vertebrate-specific TATA-binding protein N terminus“. Diss., Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/lucas/LucasO0509.pdf.
Der volle Inhalt der QuelleRossi, Merja. „Investigating cell type specific metabolism using GFP as a reporter protein“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:0c418362-63e7-496d-9ff6-584a0c54c127.
Der volle Inhalt der QuelleBerkes, Charlotte Amelia. „Elucidating the mechanisms by which MyoD establishes muscle-specific gene expression /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5071.
Der volle Inhalt der QuelleXiong, Xiaoquan. „Pancreatic islet-specific overexpression of reg3β protein“. Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107823.
Der volle Inhalt der QuelleLes protéines de la famille Reg sont impliquées dans la prolifération, la survie et la régénération des cellules pancréatiques β. Reg3β [aussi connue sous le nom de PAP (protéine associée à la pancréatite) ou encore HIP (gène exprimé dans le carcinome hépatocellulaire de l'intestin et du pancréas)] a été identifiée comme étant une protéine sécrétrice du pancréas et elle est exprimée dans les cellules acineuses pendant la phase aiguë de la pancréatite. Des études antérieures dans le laboratoire du Dr Liu ont démontré que la protéine Reg3β est spécifiquement induite durant l'hyperplasie des îlots pancréatiques à la suite d'un déficit de l'IGF-I ou encore à la suite d'une croissance de cellules d'îlots induite par GLP-I. Reg3β joue un rôle anti-apoptotique et anti-inflammatoire pendant la pancréatite aiguë. Dans cette étude, nous avons généré des souris transgéniques qui surexpriment Reg3β spécifiquement dans les cellules pancréatiques β afin d'étudier l'effet de Reg3β dans la régulation de la fonction des cellules β lors du diabète de type 1 (DT1) induit par la streptozotocine (STZ) ainsi que dans le cas du diabète de type 2 (DT2) induit par un régime alimentaire riche en gras. Les données présentées dans le chapitre II ont démontré que les îlots pancréatiques qui surexpriment la protéine murine Reg3β sont protégés du DT1 induit par la STZ. Les souris RIP-I/Reg3β transgéniques sont indiscernables des souris de contrôle de type sauvage en ce qui a trait à la fécondité, la morphologie des îlots, la masse des cellules β et la sécrétion de l'insuline. Cependant, une légère hyperglycémie et une faible expression de GLUT2 et de l'insuline ont été observées. Ces souris transgéniques sont considérablement protégées contre l'hyperglycémie induite par STZ et contre la perte de poids. A l'aide de puces d'ADN, une analyse d'échantillons d'ARN purifiés à partir d'îlots isolés a révélé l'existence de plus de 45 gènes dont l'expression est affectée par la surexpression de Reg3β. Nous avons également confirmé le changement d'expression de plusieurs gènes, y compris la régulation positive de l'osteopontin/SPP1 (qui protège les îlots et de la protéine nucléaire réactive aiguë p8/NUPR1) en utilisant le PCR en temps réel, le Western blot et l'histologie. Ces résultats confirment le potentiel de Reg3β dans la prévention des dommages induits par STZ en régulant l'expression de gènes spécifiques. Au chapitre III, nous avons démontré que la surexpression de Reg3β aggrave le DT2 induit par une alimentation riche en matières grasses. Ceci est caractérisé par le développement plus rapide et plus sévère de l'hyperglycémie, l'intolérance au glucose et la résistance à l'insuline. Reg3β semble exercer deux actions opposées en réponse à une diète riche en gras: 1) diminution accrue de l'expression basale de l'insuline et Glut2 et 2) suppression de l'activité de l'AMPK et augmentation de l'expression de la protéine p8 afin de compenser pour la perte de la fonction des cellules β. En résumé, Reg3β est un protecteur potentiel qui empêche les dommages induits par STZ aiguë, mais il est peu probable que ce soit un facteur de croissance des îlots pancréatiques. De plus, Reg3β est incapable de protéger les cellules β contre le DT2 induit par un régime alimentaire riche en gras. L'effet protecteur de Reg3β survient probablement en réponse au stress aigu mais il est inefficace contre le stress chronique induit par un régime alimentaire riche en gras.
Giorgini, Flaviano. „Functional analysis of the murine sequence-specific RNA binding protein MSY4 /“. Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10293.
Der volle Inhalt der QuelleHussain, Maruf Ali. „Non-specific protein interactions at model chromatographic surfaces“. Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243403.
Der volle Inhalt der QuelleBeiersdorfer, Alex. „Site-specific Regulation of Myosin Binding Protein-C“. University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1511856330493573.
Der volle Inhalt der QuelleBücher zum Thema "Specific protein"
Gautier, Arnaud, und Marlon J. Hinner, Hrsg. Site-Specific Protein Labeling. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2272-7.
Der volle Inhalt der QuelleGoebel, C. J. Protein values of specific grasses adapted to Lesotho. Maseru, Lesotho: The Division, 1986.
Den vollen Inhalt der Quelle findenSteitz, Thomas A. Structural studies of protein-nucleic acid interaction: Thesources of sequence-specific binding. Cambridge: Cambridge University Press, 1993.
Den vollen Inhalt der Quelle findenInternational Symposium on Site-Directed Mutagenesis and Protein Engineering (1990 Tromsø, Norway). Site-directed mutagenesis and protein engineering: Proceedings of the International Symposium on Site-Directed Mutagensis and Protein Engineering, Tromsø, 27-30 August 1990. Herausgegeben von el-Gewely M. Rafaat. Amsterdam: Elsevier Science Publishers., 1991.
Den vollen Inhalt der Quelle findenInternational Symposium on Site-Directed Mutagenesis and Protein Engineering (1990 Tromsø, Norway). Site-directed mutagenesis and protein engineering: Proceedings of the International Symposium on Site-Directed Mutagenesis and Protein Engineering, Tromsø, 27-30 August 1990. Herausgegeben von El-Gewely M. Rafaat. Amsterdam: Elsevier Science Publishers, 1991.
Den vollen Inhalt der Quelle findenSteitz, Thomas A. Structural studies of protein-nucleic acid interaction: The sources of sequence-specific binding. New York, NY, USA: Cambridge University Press, 1993.
Den vollen Inhalt der Quelle findenGonzalez-Santos, Juana Maria. Characterization of the human U4/U6 specific splicing protein Hprp3p. Ottawa: National Library of Canada, 2002.
Den vollen Inhalt der Quelle findenA, Cooke Brian, King R. J. B und Molen, H. J. van der., Hrsg. Hormones and their actions, part II: Specific actions of protein hormones. Amsterdam: Elsevier, 1988.
Den vollen Inhalt der Quelle findenOliver, Antony William. The interaction of bacteriophage fd gene 5 protein with specific nucleic acid sequences. Portsmouth: University of Portsmouth, School of Biological Sciences, 1997.
Den vollen Inhalt der Quelle findenHammond, Ester Mary. Apoptosis specific protein: A link between yeast autophagy and eukaryotic intermediate filament collapse. Birmingham: University of Birmingham, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Specific protein"
Matern, Julian C. J., Anne-Lena Bachmann, Ilka V. Thiel, Gerrit Volkmann, Alexandra Wasmuth, Jens Binschik und Henning D. Mootz. „Ligation of Synthetic Peptides to Proteins Using Semisynthetic Protein trans-Splicing“. In Site-Specific Protein Labeling, 129–43. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_9.
Der volle Inhalt der QuelleGriffin, B. Albert, Stephen R. Adams und Roger Y. Tsien. „How FlAsH Got Its Sparkle: Historical Recollections of the Biarsenical-Tetracysteine Tag“. In Site-Specific Protein Labeling, 1–6. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_1.
Der volle Inhalt der QuelleBachmann, Anne-Lena, Julian C. J. Matern, Vivien Schütz und Henning D. Mootz. „Chemical-Tag Labeling of Proteins Using Fully Recombinant Split Inteins“. In Site-Specific Protein Labeling, 145–59. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_10.
Der volle Inhalt der QuelleZhao, Bo, Keya Zhang, Karan Bhuripanyo, Yiyang Wang, Han Zhou, Mengnan Zhang und Jun Yin. „Phage Selection Assisted by Sfp Phosphopantetheinyl Transferase-Catalyzed Site-Specific Protein Labeling“. In Site-Specific Protein Labeling, 161–70. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_11.
Der volle Inhalt der QuelleFairhead, Michael, und Mark Howarth. „Site-Specific Biotinylation of Purified Proteins Using BirA“. In Site-Specific Protein Labeling, 171–84. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_12.
Der volle Inhalt der QuellePopp, Maximilian Wei-Lin. „Site-Specific Labeling of Proteins via Sortase: Protocols for the Molecular Biologist“. In Site-Specific Protein Labeling, 185–98. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_13.
Der volle Inhalt der QuelleLandgraf, Peter, Elmer R. Antileo, Erin M. Schuman und Daniela C. Dieterich. „BONCAT: Metabolic Labeling, Click Chemistry, and Affinity Purification of Newly Synthesized Proteomes“. In Site-Specific Protein Labeling, 199–215. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_14.
Der volle Inhalt der QuelleLang, Kathrin, Lloyd Davis und Jason W. Chin. „Genetic Encoding of Unnatural Amino Acids for Labeling Proteins“. In Site-Specific Protein Labeling, 217–28. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_15.
Der volle Inhalt der QuelleTamura, Tomonori, und Itaru Hamachi. „Labeling Proteins by Affinity-Guided DMAP Chemistry“. In Site-Specific Protein Labeling, 229–42. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_16.
Der volle Inhalt der QuelleTsukiji, Shinya, und Itaru Hamachi. „Ligand-Directed Tosyl Chemistry for Selective Native Protein Labeling In Vitro, In Cells, and In Vivo“. In Site-Specific Protein Labeling, 243–63. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2272-7_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Specific protein"
Rahman, M., und M. Mahmoudi. „Disease specific protein corona“. In SPIE BiOS, herausgegeben von Wolfgang J. Parak, Marek Osinski und Xing-Jie Liang. SPIE, 2015. http://dx.doi.org/10.1117/12.2079771.
Der volle Inhalt der QuelleNARIAI, NAOKI, und SIMON KASIF. „CONTEXT SPECIFIC PROTEIN FUNCTION PREDICTION“. In Proceedings of the 7th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2007). IMPERIAL COLLEGE PRESS, 2007. http://dx.doi.org/10.1142/9781860949920_0017.
Der volle Inhalt der QuelleXue, Li C., Rafael A. Jordan, Yasser El-Manzalawy, Drena Dobbs und Vasant Honavar. „Ranking docked models of protein-protein complexes using predicted partner-specific protein-protein interfaces“. In the 2nd ACM Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2147805.2147866.
Der volle Inhalt der QuelleKrul, Elaine. „Nitrogen to Protein Conversion Factors - An update and practical guidance for their use and for determining specific factors for novel protein sources“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/amwx7627.
Der volle Inhalt der QuellePreissner, K. T., E. Anders und G. Müller-Berghaus. „INTERACTION OF S PROTEIN/VITRONECTIN WITH CULTURED ENDOTHELIAL CELLS: PROMOTION OF ATTACHMENT AND SPECIFIC BINDING“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643635.
Der volle Inhalt der QuelleHuan, Jun, Wei Wang, Deepak Bandyopadhyay, Jack Snoeyink, Jan Prins und Alexander Tropsha. „Mining protein family specific residue packing patterns from protein structure graphs“. In the eighth annual international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/974614.974655.
Der volle Inhalt der QuelleMa, D., und L. Zhang. „SAT0393 Protein fingerprinting screening specific proteins in serum of patients with ankylosing spondylitis“. In Annual European Congress of Rheumatology, 14–17 June, 2017. BMJ Publishing Group Ltd and European League Against Rheumatism, 2017. http://dx.doi.org/10.1136/annrheumdis-2017-eular.3342.
Der volle Inhalt der QuelleCelik, Haydar, Jenny Han, Sung-Hyeok Hong, Gulay Bulut, Jeffrey Toretsky und Aykut Uren. „Abstract 3979: NSC305787 inhibits specific protein–protein interactions involving ezrin in osteosarcoma cells“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3979.
Der volle Inhalt der QuellePedrazzini, Emanuela. „Protein-specific induction of the unfolded protein response by two maize gamma-zeins“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1383050.
Der volle Inhalt der QuelleAshok Kumar, A., Margaret Insley, Jay Gambee, Sharon J. Busby und Kathleen L. Berkner. „SITE SPECIFIC MUTAGENESIS WITHIN THE GLA-DOMAIN OF HUMAN FACTOR IX“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644079.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Specific protein"
Pang, Shen. Identification of a Protein for Prostate-Specific Infection. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2007. http://dx.doi.org/10.21236/ada491595.
Der volle Inhalt der QuellePang, Shen. Identification of a Protein for Prostate-Specific Infection. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2004. http://dx.doi.org/10.21236/ada446372.
Der volle Inhalt der QuellePang, Shen. Identification of a Protein for Prostate-Specific Infection. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2006. http://dx.doi.org/10.21236/ada466677.
Der volle Inhalt der QuelleSomerville, Ronald L. Novel Approaches to the Characterization of Specific Protein-Protein Interactions Important in Gene Expression. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1994. http://dx.doi.org/10.21236/ada300480.
Der volle Inhalt der QuelleSomerville, Ronald L. Novel Approaches to the Characterization of Specific Protein-Protein Interactions Important in Gene Expression. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1995. http://dx.doi.org/10.21236/ada300572.
Der volle Inhalt der QuelleChen, Shu G. Characterization of Antibody Specific for Disease Associated Prion Protein. Fort Belvoir, VA: Defense Technical Information Center, Juli 2004. http://dx.doi.org/10.21236/ada432993.
Der volle Inhalt der QuelleEaton-Rye, Dr., Julian, und Gaozhong Shen. Specific mutagenesis of a chlorophyll-binding protein. Progress report. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/5701773.
Der volle Inhalt der QuelleChamovitz, Daniel A., und Zhenbiao Yang. Chemical Genetics of the COP9 Signalosome: Identification of Novel Regulators of Plant Development. United States Department of Agriculture, Januar 2011. http://dx.doi.org/10.32747/2011.7699844.bard.
Der volle Inhalt der QuelleVeen, Ryan Vander, Mark Mogler, Matthew M. Erdman und D. L. Hank Harris. Preparation of GP5-M Heterodimer Glycantype Specific Recombinant Protein and Replicon Particles. Ames (Iowa): Iowa State University, Januar 2009. http://dx.doi.org/10.31274/ans_air-180814-698.
Der volle Inhalt der QuelleBarkan, Alice, und Zach Adam. The Role of Proteases in Regulating Gene Expression and Assembly Processes in the Chloroplast. United States Department of Agriculture, Januar 2003. http://dx.doi.org/10.32747/2003.7695852.bard.
Der volle Inhalt der Quelle