Dissertationen zum Thema „Spatial scattering“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Spatial scattering" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Susanto, Raden Dwi 1963. „Spatial coherence and rough bottom scattering in shallow water“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36003.
Der volle Inhalt der QuelleLim, Dong Sung. „Phase singularities and spatial-temporal complexity in optical fibres“. Thesis, Heriot-Watt University, 1995. http://hdl.handle.net/10399/772.
Der volle Inhalt der QuelleMorgan, Stephen P. „Continuous wave optical techniques for imaging through scattering media“. Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319966.
Der volle Inhalt der QuelleHirst, Edwin. „Airborne particle shape and size classification from spatial light scattering profiles“. Thesis, University of Hertfordshire, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332653.
Der volle Inhalt der QuelleIbison, Michael Craig. „Analytical studies of spatial and temporal confinement in stimulated Raman scattering“. Thesis, University of Southampton, 1987. https://eprints.soton.ac.uk/396458/.
Der volle Inhalt der QuelleIlle, Jean-Francois. „Interaction of spatial scales in acoustic radiation from hemi-capped cylinders“. Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/16091.
Der volle Inhalt der QuelleBarton, John E. „Bioaerosol detection through simultaneous measurement of particle intrinsic fluorescence and spatial light scattering“. Thesis, University of Hertfordshire, 2005. http://hdl.handle.net/2299/14272.
Der volle Inhalt der QuelleBagschik, Kai [Verfasser], und Hans Peter [Akademischer Betreuer] Oepen. „Coherent soft X-ray magnetic scattering and spatial coherence determination / Kai Bagschik ; Betreuer: Hans Peter Oepen“. Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1143868986/34.
Der volle Inhalt der QuelleMounaix, Mickaël. „Matricial approaches for spatio-temporal control of light in multiple scattering media“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066562/document.
Der volle Inhalt der QuelleOptical imaging through highly disordered media such as biological tissue or white paint remains a challenge as spatial information gets mixed because of multiple scattering. Nonetheless, spatial light modulators (SLM) offer millions of degrees of freedom to control the spatial speckle pattern at the output of a disordered medium with wavefront shaping techniques. However, if the laser generates a broadband ultrashort pulse, the transmitted signal becomes temporally broadened as the medium responds disparately for the different spectral components of the pulse. We have developed methods to control the spatio-temporal profile of the pulse at the output of a thick scattering medium. By measuring either the Multispectral or the Time- Resolved Transmission Matrix, we can fully describe the propagation of the broadband pulse either in the spectral or temporal domain. With wavefront shaping techniques, one can control both spatial and spectral/temporal degrees of freedom with a single SLM via the spectral diversity of the scattering medium. We have demonstrated deterministic spatio-temporal focusing of an ultrashort pulse of light after the medium, with a temporal compression almost to its initial time-width in different space-time position, as well as different temporal profile such as double pulses. We exploit this spatio-temporal focusing beam to enhance a non-linear process that is two-photon excitation. It opens interesting perspectives in coherent control, light-matter interactions and multiphotonic imaging
Franchi, Gianni. „Machine learning spatial appliquée aux images multivariées et multimodales“. Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM071/document.
Der volle Inhalt der QuelleThis thesis focuses on multivariate spatial statistics and machine learning applied to hyperspectral and multimodal and images in remote sensing and scanning electron microscopy (SEM). In this thesis the following topics are considered:Fusion of images:SEM allows us to acquire images from a given sample using different modalities. The purpose of these studies is to analyze the interest of fusion of information to improve the multimodal SEM images acquisition. We have modeled and implemented various techniques of image fusion of information, based in particular on spatial regression theory. They have been assessed on various datasets.Spatial classification of multivariate image pixels:We have proposed a novel approach for pixel classification in multi/hyper-spectral images. The aim of this technique is to represent and efficiently describe the spatial/spectral features of multivariate images. These multi-scale deep descriptors aim at representing the content of the image while considering invariances related to the texture and to its geometric transformations.Spatial dimensionality reduction:We have developed a technique to extract a feature space using morphological principal component analysis. Indeed, in order to take into account the spatial and structural information we used mathematical morphology operators
Caplinger, James E. „ULTRAVIOLET RAYLEIGH SCATTER IMAGING FOR SPATIAL TEMPERATURE PROFILES IN ATMOSPHERIC MICRODISCHARGES“. Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401750986.
Der volle Inhalt der QuellePollock, Tony Steven, und tony pollock@nicta com au. „On Limits of Multi-Antenna Wireless Communications in Spatially Selective Channels“. The Australian National University. Research School of Information Sciences and Engineering, 2003. http://thesis.anu.edu.au./public/adt-ANU20050418.143712.
Der volle Inhalt der QuelleFincke, Jonathan Randall. „Quantification of the spatial and temporal evolution of stratified shear instabilities at high Reynolds number using quantitative acoustic scattering techniques“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97855.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 54-56).
The spatial and temporal evolution of stratified shear instabilities is quantified in a highly stratified and energetic estuary. The measurements are made using high-resolution acoustic backscatter from an array composed of six calibrated broadband transducers connected to a six-channel high-frequency (120-600 kHz) broadband acoustic backscatter system. The array was mounted on the bottom of the estuary and looking upward. The spatial and temporal evolution of the waves is described in terms of their wavelength, amplitude and turbulent dissipation as a function of space and time. The observed waves reach an arrested growth stage nearly 10 times faster than laboratory and numerical experiments performed at much lower Reynolds number. High turbulent dissipation rates are observed within the braid regions of the waves, consistent with the rapid transition to arrested growth. Further, it appears that the waves do not undergo periodic doubling and do not collapse once their maximum amplitude is reached. Under some conditions long internal waves may provide the perturbation that decreases the gradient Richardson number so as to initiate shear instability. The initial Richardson number for the observed instabilities is likely between 0.1 and 0.2 based on the slope and growth rate of the shear instabilities.
by Jonathan Randall Fincke.
S.M.
Martin, Martin Laura. „Numerical study of sound scattering by isolated elliptic vortices and turbulent jet shear layers“. Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0025.
Der volle Inhalt der QuelleThis study is consecrated to the scattering of acoustic waves by isolated vortices and turbulent jet shear layers. When the acoustic waves pass through a volume of turbulence, the fluctuations in the turbulence change the propagation direction of the waves. In addition, if the turbulence evolves in time, there is also a change in the sound spectral content, causing spectral broadening. In order to better understand these phenomena, a series of numerical analyses have been carried out. For this purpose, a code provided by Siemens has been used where the Linearised Euler Equations are solved by the Discontinuous Galerkin method. It simulates the acoustic wave propagation over a base flow defined by the user. To take into account the spectral broadening, the code has been modified to be able to interpolate time-dependent external data in time and space onto the base flow. The interpolation has been tested by different convergence studies of the pressure field scattered by a 2-dimensional mixing layer. Other features have been also implemented to cope with the numerical instability waves caused by the inhomogeneity of the base flow. Initially, the scattering of acoustic waves caused by an isolated Kirchhoff elliptic vortex is investigated. When the vortex is fixed in space, the study focuses on the effects of the ellipticity, the orientation of the vortex regarding the direction of propagation of the incident acoustic wave, the tangential velocity of the vortex and its size regarding the acoustic waves. The scattering has been investigated also when the vortex is convected. Special attention has been devoted to its ellipticity and the velocity convection. The results show that the ellipticity and especially the orientation of the vortex play a key role in the scattering. Finally, the study of the scattering of sound by turbulent jet shear layers is conducted, where the acoustic source is located at the jet axis. For that, the data interpolated in the base flow of the DGM code belong to an external database of round jets simulated by LES. These jets have Mach numbers varying between 0.3 and 1.3, and their temperature is 1, 1.5 or 2.25 times the ambience temperature. These parameters modify the properties of the turbulent fluctuations. Therefore, the spectral content of these fluctuations is compared between the jets. After that, the pressure fields obtained with mean base flows and turbulent base flows, and the difference between them are presented. Their directivities are also discussed, as well as the spectra of the acoustic field. The spectra are characterized by a central tone at the source frequency and two lateral lobes. They are symmetric for high Mach numbers. The position of the lateral lobes shifts closer to the central tone and their levels increase with the jet temperature for jets with constant Mach number, which can be explained by the changes undergone by the turbulence fluctuations
McCall, David Samuel. „Measurement and modelling of light scattering by small to medium size parameter airborne particles“. Thesis, University of Hertfordshire, 2011. http://hdl.handle.net/2299/6374.
Der volle Inhalt der QuelleJáuregui, Sánchez Yessenia. „The nature of noise in single-pixel cameras and their application in imaging through scattering media“. Doctoral thesis, Universitat Jaume I, 2019. http://hdl.handle.net/10803/667330.
Der volle Inhalt der QuelleA pesar de los avances logrados en las últimas décadas, las técnicas convencionales de formación de imágenes aún fracasan al intentar adquirir la imagen de un objeto inmerso en un medio turbio. Sin embargo, las técnicas de imagen basadas en luz estructurada y detección con un solo píxel han probado ser una solución alternativa. El objetivo de esta tesis ha sido el estudio de la naturaleza del ruido de estas cámaras de un solo píxel y su aplicación en la formación de imágenes a través de un medio turbio empleando luz visible y radiación infrarroja. En particular, hemos desarrollado un modelo numérico para estas cámaras que tiene en cuenta tanto las propiedades de la iluminación como las del fotodiodo y hemos desarrollado una nueva cámara de un solo píxel basada en filtraje espacial de Fourier que mejora el contraste de las imágenes obtenidas a través de un medio turbio.
Poon, Chien Sing. „Early Assessment of Burn Severity in Human Tissue with Multi-Wavelength Spatial Frequency Domain Imaging“. Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484582176416423.
Der volle Inhalt der QuelleБезугла, Наталя Василівна. „Просторова фотометрія біологічних середовищ“. Thesis, НТУУ "КПІ", 2016. https://ela.kpi.ua/handle/123456789/15918.
Der volle Inhalt der QuelleThe thesis is devoted to developing the method of photometric analysis of biological media by expansion the space of definition their optical properties. That made possible the simultaneously consider the characteristics of the optical radiation, reflected and transmitted by biological media, within the full solid angle. In the work the main methods of solution the basic equation of radiative transfer theory in problems of optical biomedical diagnostics, were analyzed. Thus, the main attention focused on optical parameters of biological media: scattering (μs), absorption (μa) coefficients, and the anisotropy factor of single scattering (g), which are responsible for spatial distribution of scattered radiation by normal and pathology tissues or media (first order approximation, diffuse approximation, small angle approximation, flux models, Monte Carlo method). Conditions of use depending the type of biological media are described. The phase functions of single scattering (Mie, Henyey-Greenstein, Gegenbauer kernel, Delta-Eddington, Eddington), which used to describe the propagation the optical radiation in different types of biological media, were considered. Systematized the methods and tools of biophotonics with the possibilities of spatial-oriented analysis of radiation, scattered by sample of biological media, organs and body parts. Goniometric and spherical types of experimental setup are the most appropriated types that can used for spatial photometry. Photometric image of varying thickness samples of biological media by ellipsoidal reflectometry were received. Based on experimental research, the axial asymmetry of anisotropy of scattering by porcine and chicken muscle tissues of varying thickness in vitro at a wavelength of 632.8 nm was found. The influence of anisotropy of scattering on accuracy of determination the optical coefficients of diffuse reflection and total transmission by method Monte Carlo was demonstrated. Study of spatial anisotropy scattering by method of photometry was suggested. On this basis, has developed methods of implementing of the mathematical basis of spatial photometry of biological media by determining the scattering intensity along parallels (circular bands) and meridians (sections). The mechanism of the transition from experimentally determined indicatrix of scattering of thick sample to the anisotropy factor of single scattering by designed methods is proposed. The proposed scheme-technical versions of information-measurement system for spatial photometry along sections with two and eight channel, which were realized in experimental setups of goniometric and spherical type. The features of element synthesis, exploitation and calibration of setups are described. The interfaces and methods of application of developed software for parallel photometric analysis "IMSOB" and "IMSOB-2", to support research the scattering indicatrix along sections in reflected or transmitted light for two- and eight-channel systems respectively are given. The method of sample preparation of biological media and features of experiment for different experimental setups of spatial photometry are given. The methodology of preparation the biological samples used for research in this paper were detail described. The analysis of the indicatrix of laser light scattering by thick samples of muscle tissue at different wavelengths with transverse and longitudinal placement of fibers was made. The data obtained by method of spatial photometry, which realized the principle of analyses of the sections. Experimental studies conducted on goniometric type setup. For phase function of single scattering Henyey-Greenstein, modified by isotropic component in each sections, the transition from indicatrix scattering of thick sample to the single scattering anisotropy factor g was made. Identity of experimentally-determined values of the optical coefficients of diffuse reflection and total transmission and determined by the results of Monte Carlo simulation using the average values by sections of the anisotropy factor of single scattering are approved.
Диссертация посвящена разработке метода фотометрического анализа биологических сред путем расширения пространства определения их оптических свойств, что позволило одновременно учесть характеристики отраженного и пропущенного средой оптического излучения в пределах полного телесного угла. В работе разработаны методики реализации математического базиса пространственной фотометрии биологических сред по принципу определения интенсивности рассеяния по параллелям (кольцевым полосам) и меридианам (сечениям). Предложены схемотехнические решения двух- и восьмиканальной информационно-измерительных систем для пространственной фотометрии по сечениям, реализованные на уровне экспериментальных установок. Разработано программное обеспечение фотометрического параллельного анализа, позволяющее исследовать индикатрисы рассеяния по сечениям. Проведен анализ индикатрис рассеяния лазерного излучения толщинными образцами мышечных тканей на различных длинах волн и с разным размещением волокон. Осуществлен переход от индикатрисы рассеяния толщинных образцов к фактору анизотропии однократного рассеяния. Доказана идентичность экспериментально определенных величин оптических коэффициентов диффузного отражения и полного пропускания и определенных по результатам моделирования Монте-Карло с использованием усредненной по сечениям величины фактора анизотропии однократного рассеяния.
Ocer, Nuri Erkin. „Parametric Investigation Of Spray Characteristics Using Interferometric Particle Imaging Technique“. Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12611397/index.pdf.
Der volle Inhalt der QuellePrevost, Florian. „Combinaison cohérente dans une fibre multicœurs pour des applications LIDAR“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLO003/document.
Der volle Inhalt der QuelleCoherent Lidars can measure wind speed at long distance, using the Doppler frequency shift induced by the movement of the back reflecting aerosols. Wind Lidars usually include a MOPFA (Master Oscillator Power Fiber Amplifier) made of a continuous oscillator, an intensity modulator and a fiber amplifier. The main objective of this thesis is the realization of an eye-safe, high peak power, pulsed MOPFA using an erbium-doped multicore fiber. Single frequency pulse amplification in fibers is limited by nonlinear effects due to tight beam confinement in the core. Multicore fibers can be seen as a very large core fiber, thus mitigating the nonlinear effects. The pulse to be amplified is divided and injected into all cores of the amplifying fiber using a spatial light modulator (SLM). The amplified output pulses are then recombined at the fiber output by a diffractive optical element (DOE). The coherent combination at fiber output requires independent control of phases at injection provided by a feedback loop based on the DOE zero order power. The peak power after combination is the sum of the peak powers reached in each of the cores
Dutrion, Cécile. „Étude de faisabilité d'un revêtement élastique pour la furtivité acoustique“. Thesis, Toulouse, ISAE, 2014. http://www.theses.fr/2014ESAE0011/document.
Der volle Inhalt der QuelleMaking an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles.These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This thesis deals with a different method and studies the effects in terms of scattering reduction of an elastic multi-layered coating fixed to the object to conceal. Vibrations of the coating subject to acoustic waves are first modelled to compute the scattered pressure in the external fluid. Mechanical and dimensional properties of the layers leading to omnidirectional scattering reduction are optimised. Considering an external fluid consisting of air, realistic configurations of coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or on a larger frequency band. The problem of experimental characterisation is also addressed.The study then focuses on a cylinder immersed in water. Bi-layer isotropic coatings can be used in such configuration. A parametric study is led on the characteristics of the internal layer. Finally, significant scattering reduction is achieved for alarger frequency range by increasing the number of layers. Examples of four-layer isotropic coatings are presented to highlight this result
Bsaibes, Maroun. „Vers une meilleure compréhension des mécanismes de pertes et de couplages de modes dans les fibres optiques légèrement multimodes“. Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILR004.
Der volle Inhalt der QuelleNumerous technological research initiatives have been conducted in recent years to propose solutions to the upcoming saturation of the capacity of single-mode optical fiber-based telecommunications networks. In these conditions, while information multiplexing is already based on the simultaneous use of several physical dimensions (wavelength, polarization, phase, and time), the addition of a new dimension, namely space, seems to be the most promising solution. Space division multiplexing (SDM) of the data is then possible through the use of multicore fibers (MCF) or few-mode fibers (FMF) and the capacity then becomes proportional to the number of spatial channels available. In the case of FMF, this is known as mode division multiplexing (MDM), with the channels corresponding to the spatial modes guided in the fiber core. However, there are many challenges to overcome in order to achieve low error rate transmissions over respectable distances. Thus, the reduction of the differential mode attenuation (DMA) and the coupling between modes are two obstacles to overcome before considering transposing such a technology to the field.The first objective of this thesis was to identify and quantify the contribution of the different loss sources to the total attenuation of each mode in FMFs with different index profiles but supporting the same number of modes. The second objective was to establish and analyze the suspected link between some attenuation mechanisms, in this case, those related to light scattering, and the coupling between modes. At 1550 nm, it is known that light scattering represents the largest source of attenuation in silica fibers. It is a combination of two factors: Rayleigh scattering which depends on the physico-chemical properties of the material used to create the fiber, and SALS (small angle light scattering), less documented in the literature, which results from fluctuations of the refractive index in the waveguide. In this thesis, the Rayleigh and SALS scattering coefficients were quantified by measuring the angular distribution of the scattered intensity of different modes. In addition, the absorption attenuation (infrared and OH) has also been quantified. On the other hand, a simple method based on optical reflectometry (OTDR) has been applied to compare the Rayleigh coefficient of the same modes propagating in two different FMFs. In parallel, theoretical models have been developed to analyze the obtained results, in particular in the case of SALS. The modal dependencies of the SALS scattering coefficients of different fibers have been qualitatively reproduced. This work provides crucial information for the understanding of the impact of the FMF index profile on the mode attenuation coefficients, leading to a better understanding of the limitations of FMFs and the improvements that can be made to guide their design
Fezzaa, Kamel. „Étude et applications de la cohérence à l'ESRF par interférométrie X“. Université Joseph Fourier (Grenoble ; 1971-2015), 1998. http://www.theses.fr/1998GRE10051.
Der volle Inhalt der QuelleGhabbach, Ayman. „Métrologie de la polarisation de la lumière à l'échelle du grain de speckle : histogrammes du degré de polarisation, dépolarisation spatiale et repolarisation temporelle“. Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4346.
Der volle Inhalt der QuellePolarimetric techniques knew a recent rise, especially in the field of satellite imaging andbiomedical, optics. These techniques are extended to the case of the disordered media, for applications related to the imaging scattering medium. In this context the unified theories appeared, combiningtemporal and spatial coherence, and depolarization...The team CONCEPT at Fresnel Institute, established in 2012, is now closely involved in the study of the polarization state of the scattered light within the speckle size. New results have been highlighted, such as the multi-scale spatial depolarization, the temporal enpolarization phenomena, and the spectral depolarization. The predominance of these effects is naturally related to the speckle origin (surface, bulk), but also to the absorption levels and the structural properties (roughness, heterogeneities) of disordered media.However, most of these studies are theoretical, and few experiments were previously able to reinforce the predictions. This statement is related to the extreme difficulty of accurately measuring the polarization of light across the speckle grain. Our thesis had the aim to address this gap in, and we were able to develop a procedure to extract the optical polarization states, and the degree of polarization (DOP), inside of the speckle grain.Consequently, the polarization is here extracted for each pixel of a CCD matrix, which leads first to highlight a cloud of points more or less extended on the Poincaré sphere. DOP histograms are then used as genuine signatures of disordered media
Nguyen, Linh Trung. „Estimation and separation of linear frequency- modulated signals in wireless communications using time - frequency signal processing“. Queensland University of Technology, 2004. http://eprints.qut.edu.au/15984/.
Der volle Inhalt der QuelleNguyen, Linh-Trung. „Estimation and separation of linear frequency- modulated signals in wireless communications using time - frequency signal processing“. Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/15984/1/Nguyen_Linh-Trung_Thesis.pdf.
Der volle Inhalt der QuelleWillman, Christopher. „Laser diagnostics for spatially resolved thermometry in combustion and flows“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:fc0cbf95-302f-4de7-9212-6afa2632c93a.
Der volle Inhalt der QuelleBykov, A. (Alexander). „Experimental investigation and numerical simulation of laser light propagation in strongly scattering media with structural and dynamic inhomogeneities“. Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514261558.
Der volle Inhalt der QuelleGaudfrin, Florian. „Lidar supercontinuum pour la caractérisation spectrale des milieux diffusants à haute résolution spatiale : Étude numérique et développement instrumental“. Thesis, Toulouse, ISAE, 2020. http://www.theses.fr/2020ESAE0007.
Der volle Inhalt der QuelleLidar diagnostic methods provide information on the optical parameters of the medium (scattering and absorption coefficients). These quantities depend on the properties of light (wavelength, polarization) and are then used to retrieve the microscopic properties of the medium such as size distribution, morphology, optical index or particle concentration. However, current lidar techniques have limitations. The laser sources used are limited to a few visible or near infrared wavelengths and the identification of the microphysical properties requires a priori knowledge of the scattering medium. Hypotheses are formulated to constrain the inversion methods and to provide information of interest on natural and anthropogenic aerosols (carbonaceous particles, desert dust, volcanic ash, etc.). In addition, current lidars consider kilometric ranges, whereas there are applications for those at short distances: in situ measurements at nozzle outlets, local control of industrial plumes with high spatial resolution, etc. Supercontinuum laser sources extend from the visible to the infrared and offer new possibilities for measuring the optical properties of aerosols over a wide continuous spectral range. Their use in lidar systems is considered to identify the optical properties of the medium over a wide and continuous range of wavelengths. A major objective of this thesis is to demonstrate the viability of supercontinuum lidars for the spectral characterization of surface and volume targets at high spatial resolution. The first axis concerns the numerical study of the system with the development of the PERFALIS simulator. The second axis focuses on the instrumental design of a lidar called COLIBRIS, allowing short-range lidar measurements with high spatial resolution (submetric). A first version was proposed in monochromatic analysis and a second one with a hyperspectral analysis of backscattered light. Finally, a new lidar inversion method named ST-LIM has been developed to identify the optical properties of a plume without any a priori hypothesis on the lidar ratio (optical parameter characterizing the surveyed medium). The comparison of experimental measurements with simulation results validates the lidar simulator in its two operating modes (monochromatic and hyperspectral). The results show the importance of considering the actual shape of the laser pulses during the light-matter interaction in the case of thin plume soundings with high spatial resolution. In the future, the lidar simulator may be used to design new supercontinuum or monochromatic lidar instruments and to study their performance for on-board versions
Watson, Francis Maurice. „Better imaging for landmine detection : an exploration of 3D full-wave inversion for ground-penetrating radar“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/better-imaging-for-landmine-detection-an-exploration-of-3d-fullwave-inversion-for-groundpenetrating-radar(720bab5f-03a7-4531-9a56-7121609b3ef0).html.
Der volle Inhalt der QuelleBaelde, Aurélien. „Propagation des ondes ultrasonores dans les alliages de titane à fort fibrage : cohérence spatiale et diffusion multiple“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066271/document.
Der volle Inhalt der QuelleThis manuscript is devoted to the study of ultrasonic wave propagation in complex media composed of elongated scatterers, and specifically titanium alloys comprising macrozones. This study is carried out using a linear phased array probe rotating around its axis and driven by a multi-channel programmable amplifier. The ultrasonic field backscattered by elongated scatterers presents an anisotropic spatial coherence and we show that the intensity backscattered by such a medium depends on the angle between scatterers elongation direction and the orientation of the probe in the plane perpendicular to the insonified direction. This dependence allows to determine the macrozones elongation direction and size, and to reduce the structural noise during a non-destructive evaluation. A three dimensional cartography of local elongation direction of macrozones is achievable by using two beams focused at the same point but with different directions of incidence. In order to assess the scattering regime at conventional testing frequencies, we developed a multiple scattering measure: the single scattering proportion estimator, based on Alexandre Aubry’s PhD thesis (UPMC 2008). Applied on TA6V and Ti17 alloys, it showed strong multiple scattering. We further extended this estimator to the case of water/solid complex interfaces. Lastly, we proposed a new visualization of forging simulation results, allowing to directly observe the real macrozones elongation direction and to better design inspection procedures
Baelde, Aurélien. „Propagation des ondes ultrasonores dans les alliages de titane à fort fibrage : cohérence spatiale et diffusion multiple“. Electronic Thesis or Diss., Paris 6, 2017. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2017PA066271.pdf.
Der volle Inhalt der QuelleThis manuscript is devoted to the study of ultrasonic wave propagation in complex media composed of elongated scatterers, and specifically titanium alloys comprising macrozones. This study is carried out using a linear phased array probe rotating around its axis and driven by a multi-channel programmable amplifier. The ultrasonic field backscattered by elongated scatterers presents an anisotropic spatial coherence and we show that the intensity backscattered by such a medium depends on the angle between scatterers elongation direction and the orientation of the probe in the plane perpendicular to the insonified direction. This dependence allows to determine the macrozones elongation direction and size, and to reduce the structural noise during a non-destructive evaluation. A three dimensional cartography of local elongation direction of macrozones is achievable by using two beams focused at the same point but with different directions of incidence. In order to assess the scattering regime at conventional testing frequencies, we developed a multiple scattering measure: the single scattering proportion estimator, based on Alexandre Aubry’s PhD thesis (UPMC 2008). Applied on TA6V and Ti17 alloys, it showed strong multiple scattering. We further extended this estimator to the case of water/solid complex interfaces. Lastly, we proposed a new visualization of forging simulation results, allowing to directly observe the real macrozones elongation direction and to better design inspection procedures
Leedumrongwatthanakun, Saroch. „Quantum information processing with a multimode fibre“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS526.
Der volle Inhalt der QuelleTransport of information through a multimode optical fibre raises challenges when one wants to increase the data traffic using many spatial modes due to modal cross-talk and dispersion. Instead of considering those complex mixing of modes as a detrimental process, in this dissertation, we harness its mode mixing to process quantum optical information. We implement a reconfigurable linear optical network, a fundamental building block for scalable quantum technologies, based on an inverse photonic approach exploiting the technology of wavefront shaping. We experimentally demonstrate manipulation of two-photon quantum interference on various linear optical networks across both spatial and polarization degrees of freedom. In particular, we experimentally show the zero-transmission law in Fourier and Sylvester interferometers, which are used to certificate the degree of indistinguishability of an input state. Moreover, thanks to the ability to implement a non-unitary network, we observe the photon anti-coalescence effect in all output configurations, as well as the realization of a tunable coherent absorption experiment. Therefore, we demonstrate the reconfigurability, accuracy, scalability and robustness of the implemented linear optical networks for quantum information processing. Furthermore, we study the statistical properties of one-and two-photon speckles generated from various ground-truth states of light after propagating through a multimode fibre. These statistical properties of speckles can be used to extract information about the dimensionality, purity, and indistinguishability of an unknown input state of light, therefore allowing for state classification. Our results highlight the potential of complex media combined with wavefront shaping for quantum information processing
Croënne, C., J. O. Vasseur, Matar O. Bou, M. F. Ponge, P. A. Deymier, A. C. Hladky-Hennion und B. Dubus. „Brillouin scattering-like effect and non-reciprocal propagation of elastic waves due to spatio-temporal modulation of electrical boundary conditions in piezoelectric media“. AMER INST PHYSICS, 2017. http://hdl.handle.net/10150/623049.
Der volle Inhalt der QuelleBlanluet, Arthur. „Étude par acoustique large bande de la composition et de la distribution spatiale de couches diffusantes denses dans le golfe de Gascogne“. Thesis, Rennes, Agrocampus Ouest, 2019. http://www.theses.fr/2019NSARH110.
Der volle Inhalt der QuelleIntermediate trophic components of pelagic ecosystem (from mesozooplakton to micronekton) funnel energy and organic matters from primary producers to many commercial species (anchovy, sardines…). Some of these organisms are supposed to be important contributors to the ubiquitous Sound Scattering Layers (SSLs) observed over a broad range of spatio-temporal scales and geographical areas. Yet, the SSLs taxonomic composition remains largely unknown. The aim of this PhD was to describe the composition and repartition of dense SSLs observed in the Bay of Biscay (France) in spring at several spatial scales, using broadband acoustics, nets and videos. In the first chapter, we showed that the echo sounder beam widths had few effect on the SSLs backscatter, suggesting those SSLs could be composed of unidentified small gaseous scatterers. In the second chapter we applied a forward approach to characterize the composition of SSLs sampled in spring 2016 at small scale,by comparing in situ frequency responses to predictions of scatterer models parameterized with biological sampling data. We determined that these SSLs were probably composed of gas-bearing siphonophores, who, together with mesopelagic fish, dominated the frequency spectra at low frequencies (18-150 kHz). The acoustic backscatter at higher frequencies was dominated by a mix of mesozooplankton organisms, including high densities of pteropods. In the third chapter we applied unsupervised classification methods and a supervised discriminant analysis to delineate the spatial distribution of a peculiar surface SSL composed of
Sankhe, Mamadou. „Caractérisations spatio-temporelles de milieux plasmagènes à haute énergie par diffusion laser“. Thesis, Orléans, 2019. http://www.theses.fr/2019ORLE3028.
Der volle Inhalt der QuelleThe transient plasmagenic media generated by tip-tip electric discharge and laser breakdown are used in fuel mixture ignition applications or for analytical purposes such as Laser-Induced Plasma Spectroscopy (LIBS). In addition to their important scientific and technological interests, these media are still difficult to grasp because of their transient nature and the important gradients that characterize them. In addition, the hypotheses of Local Thermodynamic Equilibrium (LTE), often made as part of their study, are not always verified.In order to better understand these transient plasmagenic media, two complementary spectroscopic characterization techniques have been implemented: Optical Emission Spectroscopy (OES) and Thomson Scattering (TS).The combined use of OES (based on complementary hypotheses validating LTE) and TS (assuming only a Maxwellian distribution of translational velocities of particles), should make it possible to validate the conditions of LTE in the plasmas studied and of provide realistic input data for modeling.In this manuscript, we studied a tip-tip electrical discharge, used in the ignition of metal powders, and laser-induced breakdown and ablation plasmas, used for LIBS applications
Brunet, Laurence. „Repartition spatiale de la densite electronique moleculaire en composantes atomiques in situ“. Paris 6, 1987. http://www.theses.fr/1987PA066042.
Der volle Inhalt der QuelleRossi, Giuseppe Germano. „Etude de la réponse au rayonnement X entre 10KeV-100KeV des détecteurs à micro-pistes de germanium avec résolution spatiale et en énergie“. Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10089.
Der volle Inhalt der QuelleBöhm, Julian. „Phénomènes de transport originaux dans des expériences micro-ondes via la mise en forme spatiale et spectrale“. Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4048/document.
Der volle Inhalt der QuelleTransport of waves plays an important role in modern communication systems like Wi-Fi or optical fibres. Typical problems in such systems concern security against possible intruders, energy consumption, time efficiency and the possibility of mode filtering. Microwave experiments are suited to study this kind of problems, because they offer a good control of the experimental parameters. Thus we can implement the method of wave shaping to investigate atypical transport phenomena, which address the mentioned problems. Wave front shaping solely based on the transmission together with the Wigner-Smith time delay formalism allows me to establish special scattering states in situ. These scattering states avoid a pre-selected region, focus on a specific spot or follow trajectories of classical particles, so called particle-like scattering states. Mode filtering is induced inside a waveguide with wavy boundaries and position dependent loss. The boundary profiles are chosen in such a way that the two propagating modes describe an encircling of an exceptional point in the Bloch picture. The asymmetric mode filtering is found due to the appearing non-adiabatic transitions. Another part of my work deals with Grover’s quantum search. I put such a search into practice in a two-dimensional graphene-lattice using coupled resonators, which form a tight-binding analogue. In this proof of principle experiment we search for different resonators attached to the graphene-lattice. Furthermore, the scaling behaviour of the quantum search is quantified for a linear chain of resonators
ROSATI, ROBERTO. „Microscopic modeling of energy dissipation and decoherence in nanoscale materials and devices“. Doctoral thesis, Politecnico di Torino, 2015. http://hdl.handle.net/11583/2599755.
Der volle Inhalt der QuelleLepcio, Petr. „Efekt submikrometrických rysů na reologii polymerních nanokompozitů“. Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2018. http://www.nusl.cz/ntk/nusl-391876.
Der volle Inhalt der QuelleGolkin, Stanislav. „Simulation de la propagation d'ondes SH dans des structures périodiques et de la diffusion multiple d'ondes de volume en milieux aléatoires“. Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR1A002/document.
Der volle Inhalt der QuelleThe study is concerned with acoustic waves in elastic media with a different nature of in homogeneity consisting in either periodically continuous or piece wise variation of material properties, or in random sets of defects embedded into a homogeneous matrix, with a given statistical distribution. The scope of problems is topical in non-destructive testing and other applications of ultrasound.Theoretical methods describing involved acoustic phenomena (complex dispersion features, coherent wave in random media, ensemble average techniques) often rely on certain a priori assumptions which render numerical verification especially important.The thesis presents results of analytical modelling of the propagation of surface acoustic waves along periodic half-space, for which the dispersion spectrum is rather complex (discontinuous spectrum of propagation for the surface waves). A 2nd order FDTD numerical code has been developed in order to perform numerical experiments in the space and time domains, and to corroborate the analytical predictions in the frequency domain. A good agreement of simulated results with analytical modelling demonstrates applicability and consistency of the numerical tool. Finally, the code has been used for extracting numerically the coherent wave regime (mean wave over ensemble averaging of the positions of scatterers) for the acoustic propagation in different types of populations of randomly distributed scatterers. The results indicate ranges of validity of some multiple scattering analytical techniques
Baba, Ibrahim El. „Contributions numériques en compatibilité électromagnétique impulsionnelle. Paradigme pour la caractérisation temporelle d'équipements“. Thesis, Clermont-Ferrand 2, 2012. http://www.theses.fr/2012CLF22232/document.
Der volle Inhalt der QuelleThe work presented in this thesis concerns the use of time techniques for impulsive ElectroMagnetic Compatibility (EMC) applications, mainly for Modes Stirred Reverberation Chamber (MSRC) studies. Contrary to approaches from frequency domain, obviously well-fitted for studies in resonant cavities, the main idea of this thesis was to study an original time method for MSRC investigation to propose new paradigms for equipment characterization. Originally developed in acoustics, the Time Reversal (TR) process recently applied to electromagnetic waves allows focusing it both in time and space. The process quality is even higher if the propagation environment is reverberant. Thus, the Reverberation Chambers (RC) are an ideal locations for TR implementation. After a study of parameters involved in the TR process coupled with the definition of specific numerical methods, the applications of TR in MSRC are exposed. In particular, the interest of selective focusing for radiated susceptibility tests is demonstrated. The importance of absorption and diffraction coefficients for MSRC equipment justifies their accurate and efficient characterization. To this end, the implementation of a temporal calculation of the Total Scattering Cross Section (TSCS) in RC is detailed. The application of this new technique to different forms of stirrers allows finally to face these results with those obtained from standard EMC test
Hunter, Brandon. „Channel Probing for an Indoor Wireless Communications Channel“. BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/64.
Der volle Inhalt der QuelleYeh, Po-Ting, und 葉柏廷. „Spatial and Temporal Characteristics of Light-Scattering Generated by Laser-Induced Breakdown“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/n93rt3.
Der volle Inhalt der Quelle國立交通大學
電子物理系所
106
The main goal of this research is to propose a new method of producing 3D visual image with high intensity 532 nm light source, and can be viewed from all 360 degrees. We use a high peak power, passively Q-switched flash-lamp laser and frequency-doubling technique, we can produce a 532 nm scattering light from laser-induced breakdown. We explore the consequence of 532 nm scattering and laser-induced breakdown by studying 90-degree spectrum and time-domain analysis. Further on, we discuss how different input energy, spot size and breakdown threshold affect focal point image and focal point image. These results show the possibility of visual-light 3D image by laser-induced breakdown.
Dama, Yousef A. S., Raed A. Abd-Alhameed, Dawei Zhou, Steven M. R. Jones, Mark B. Child und Peter S. Excell. „Calculation of the Spatial Envelope Correlation Between Two Antennas in Terms of the System Scattering Parameters Including Conducting Losses“. 2010. http://hdl.handle.net/10454/4785.
Der volle Inhalt der QuelleThe envelope correlation for a two-element antenna array may be calculated using the antenna radiation fields, or more simply from the scattering parameters of the system. The use of scattering parameters provides a major simplification over the direct use of field data. In this paper we propose a modification of the scattering parameter method which also includes the antenna losses. This approach has the advantage of simplifying the antenna design process, especially when low envelope correlations are needed. It also offers a better prediction of the spatial envelope correlation, and a good framework for understanding the effects of the mutual coupling. The accuracy of this proposed method is illustrated by two examples.
Pollock, Tony Steven. „On Limits of Multi-Antenna Wireless Communications in Spatially Selective Channels“. Phd thesis, 2003. http://hdl.handle.net/1885/47999.
Der volle Inhalt der QuelleDel, Bel Belluz Justin. „Spatial and temporal particulate variability at an integrated multi-trophic aquaculture (IMTA) site in Kyuquot Sound, British Columbia, using bio-optical methods“. Thesis, 2014. http://hdl.handle.net/1828/5658.
Der volle Inhalt der QuelleGraduate
0792
0768
0752
jdelbel@uvic.ca
Ren, Yu-Jiun, und 任宇駿. „Development of Hybrid Spatio-Temporl Radio Channel Model and Scattering Cluster Model for Macrocellular Environments“. Thesis, 2002. http://ndltd.ncl.edu.tw/handle/94595107434883856712.
Der volle Inhalt der Quelle國立交通大學
電信工程系
90
This paper presents a new hybrid spatio-temporal radio channel model, which can characterize both the space-time property and the scatterer cluster effect well for macrocellular radio channel in urban environment. The hybrid model combines a site-specific model with a statistical model. The former model employs a deterministic approach to describe the direct wave, specular reflection wave and diffraction wave. The latter one employs a statistical approach to describe the scattered or diffused fields, which is due to the local scatterers around the mobile station, rough surface of dominant buildings, and multiple scattering effect of corners/edges of dominant buildings. It is found that the scattering or the diffused fields from each dominant building are arrived in groups in space-time domain, which can be modeled by applying the scatterer cluster. Here, a scatterer cluster is described by introducing randomly positioned scatterers in the associated “effective scattering zone”, which represents the effective diffused-reflection or -diffraction area of the buildings. The rules to determine the scattering zone size and the scatterer number are investigated by measurement-based method. By comparing the computed time of arrival, angle of arrival, r.m.s. angle spread and r.m.s. delay spread with the measured one, the hybrid model has been proved to be an effective and accurate spatio-temporal radio channel model.
Svetogorova, Elena. „Integral equation approach to reflection and transmission of a plane TE-wave at a (linear/nonlinear) dielectric film with spatially varying permittivity“. Doctoral thesis, 2004. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2004110212.
Der volle Inhalt der Quelle