Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spatial scattering“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spatial scattering" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spatial scattering"
Li, Qingqing, Kyeong Jin Kim, Shengzhen Ruan, Lei Yuan, Ling Yang und Jiliang Zhang. „Polarized Spatial Scattering Modulation“. IEEE Communications Letters 23, Nr. 12 (Dezember 2019): 2252–56. http://dx.doi.org/10.1109/lcomm.2019.2943864.
Der volle Inhalt der QuelleLi, Cai, Wenxi Cao und Yuezhong Yang. „Optical scattering property: spatial and angle variability in daya bay“. Chinese Optics Letters 10, S2 (2012): S20101. http://dx.doi.org/10.3788/col201210.s20101.
Der volle Inhalt der QuelleJannson, Joanna, Emil Wolf und Tomasz Jannson. „Spatial coherence discrimination in scattering“. Optics Letters 13, Nr. 12 (01.12.1988): 1060. http://dx.doi.org/10.1364/ol.13.001060.
Der volle Inhalt der QuelleEriksson, Ronja, Per Gren, Mikael Sjödahl und Kerstin Ramser. „Investigation of the Spatial Generation of Stimulated Raman Scattering Using Computer Simulation and Experimentation“. Applied Spectroscopy 76, Nr. 11 (24.10.2022): 1307–16. http://dx.doi.org/10.1177/00037028221123593.
Der volle Inhalt der QuelleShinohara, Yuya, und Yoshiyuki Amemiya. „Effect of finite spatial coherence length on small-angle scattering“. Journal of Applied Crystallography 48, Nr. 6 (13.10.2015): 1660–64. http://dx.doi.org/10.1107/s160057671501715x.
Der volle Inhalt der QuelleBian, Yaoxing, Hongyu Yuan, Junying Zhao, Dahe Liu, Wenping Gong und Zhaona Wang. „External Electric Field Tailored Spatial Coherence of Random Lasing“. Crystals 12, Nr. 8 (18.08.2022): 1160. http://dx.doi.org/10.3390/cryst12081160.
Der volle Inhalt der QuellePierrat, Romain, Rachid Elaloufi, Jean-Jacques Greffet und Rémi Carminati. „Spatial coherence in strongly scattering media“. Journal of the Optical Society of America A 22, Nr. 11 (01.11.2005): 2329. http://dx.doi.org/10.1364/josaa.22.002329.
Der volle Inhalt der QuelleAndreev, Anatolii V., Yu A. Il'inskiĭ und A. S. Mkoyan. „Spatial evolution of cooperative Raman scattering“. Soviet Journal of Quantum Electronics 19, Nr. 4 (30.04.1989): 488–90. http://dx.doi.org/10.1070/qe1989v019n04abeh007901.
Der volle Inhalt der QuelleDONG, GUANGJIONG. „SPATIAL TUNING OF BOSE-EINSTEIN CONDENSATIONS“. International Journal of Modern Physics B 21, Nr. 23n24 (30.09.2007): 4265–70. http://dx.doi.org/10.1142/s0217979207045505.
Der volle Inhalt der QuelleWang, Liang, Gaokun Yu, Minshuai Liang, Yun Ren und Linhui Peng. „Experimental Measurement of Forward Scattering from Very Rough Sand Ripples in a Water Tank“. Remote Sensing 14, Nr. 16 (09.08.2022): 3865. http://dx.doi.org/10.3390/rs14163865.
Der volle Inhalt der QuelleDissertationen zum Thema "Spatial scattering"
Susanto, Raden Dwi 1963. „Spatial coherence and rough bottom scattering in shallow water“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36003.
Der volle Inhalt der QuelleLim, Dong Sung. „Phase singularities and spatial-temporal complexity in optical fibres“. Thesis, Heriot-Watt University, 1995. http://hdl.handle.net/10399/772.
Der volle Inhalt der QuelleMorgan, Stephen P. „Continuous wave optical techniques for imaging through scattering media“. Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319966.
Der volle Inhalt der QuelleHirst, Edwin. „Airborne particle shape and size classification from spatial light scattering profiles“. Thesis, University of Hertfordshire, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332653.
Der volle Inhalt der QuelleIbison, Michael Craig. „Analytical studies of spatial and temporal confinement in stimulated Raman scattering“. Thesis, University of Southampton, 1987. https://eprints.soton.ac.uk/396458/.
Der volle Inhalt der QuelleIlle, Jean-Francois. „Interaction of spatial scales in acoustic radiation from hemi-capped cylinders“. Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/16091.
Der volle Inhalt der QuelleBarton, John E. „Bioaerosol detection through simultaneous measurement of particle intrinsic fluorescence and spatial light scattering“. Thesis, University of Hertfordshire, 2005. http://hdl.handle.net/2299/14272.
Der volle Inhalt der QuelleBagschik, Kai [Verfasser], und Hans Peter [Akademischer Betreuer] Oepen. „Coherent soft X-ray magnetic scattering and spatial coherence determination / Kai Bagschik ; Betreuer: Hans Peter Oepen“. Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1143868986/34.
Der volle Inhalt der QuelleMounaix, Mickaël. „Matricial approaches for spatio-temporal control of light in multiple scattering media“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066562/document.
Der volle Inhalt der QuelleOptical imaging through highly disordered media such as biological tissue or white paint remains a challenge as spatial information gets mixed because of multiple scattering. Nonetheless, spatial light modulators (SLM) offer millions of degrees of freedom to control the spatial speckle pattern at the output of a disordered medium with wavefront shaping techniques. However, if the laser generates a broadband ultrashort pulse, the transmitted signal becomes temporally broadened as the medium responds disparately for the different spectral components of the pulse. We have developed methods to control the spatio-temporal profile of the pulse at the output of a thick scattering medium. By measuring either the Multispectral or the Time- Resolved Transmission Matrix, we can fully describe the propagation of the broadband pulse either in the spectral or temporal domain. With wavefront shaping techniques, one can control both spatial and spectral/temporal degrees of freedom with a single SLM via the spectral diversity of the scattering medium. We have demonstrated deterministic spatio-temporal focusing of an ultrashort pulse of light after the medium, with a temporal compression almost to its initial time-width in different space-time position, as well as different temporal profile such as double pulses. We exploit this spatio-temporal focusing beam to enhance a non-linear process that is two-photon excitation. It opens interesting perspectives in coherent control, light-matter interactions and multiphotonic imaging
Franchi, Gianni. „Machine learning spatial appliquée aux images multivariées et multimodales“. Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM071/document.
Der volle Inhalt der QuelleThis thesis focuses on multivariate spatial statistics and machine learning applied to hyperspectral and multimodal and images in remote sensing and scanning electron microscopy (SEM). In this thesis the following topics are considered:Fusion of images:SEM allows us to acquire images from a given sample using different modalities. The purpose of these studies is to analyze the interest of fusion of information to improve the multimodal SEM images acquisition. We have modeled and implemented various techniques of image fusion of information, based in particular on spatial regression theory. They have been assessed on various datasets.Spatial classification of multivariate image pixels:We have proposed a novel approach for pixel classification in multi/hyper-spectral images. The aim of this technique is to represent and efficiently describe the spatial/spectral features of multivariate images. These multi-scale deep descriptors aim at representing the content of the image while considering invariances related to the texture and to its geometric transformations.Spatial dimensionality reduction:We have developed a technique to extract a feature space using morphological principal component analysis. Indeed, in order to take into account the spatial and structural information we used mathematical morphology operators
Bücher zum Thema "Spatial scattering"
Karlsson, E. B. Scattering by entangled spatial degrees of freedom. Chilton: Rutherford Appleton Laboratory, 2001.
Den vollen Inhalt der Quelle findenLaboratory, Wave Propagation, Hrsg. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Den vollen Inhalt der Quelle findenLaboratory, Wave Propagation, Hrsg. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Den vollen Inhalt der Quelle findenLataitis, R. J. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Den vollen Inhalt der Quelle findenLaboratory, Wave Propagation, Hrsg. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Den vollen Inhalt der Quelle findenLaboratory, Wave Propagation, Hrsg. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Den vollen Inhalt der Quelle findenThe longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Den vollen Inhalt der Quelle findenHayazawa, Norihiko, und Prabhat Verma. Nanoanalysis of materials using near-field Raman spectroscopy. Herausgegeben von A. V. Narlikar und Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.10.
Der volle Inhalt der QuelleFurst, Eric M., und Todd M. Squires. Interferometric tracking. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0006.
Der volle Inhalt der QuelleHoring, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.
Der volle Inhalt der QuelleBuchteile zum Thema "Spatial scattering"
Sheppard, Colin J. R. „Scattering and the Spatial Frequency Representation“. In Nanostructure Science and Technology, 61–92. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-35659-4_3.
Der volle Inhalt der QuelleAltman, C., und K. Suchy. „Generalization of the scattering theorem“. In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 83–113. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1530-1_3.
Der volle Inhalt der QuelleAltman, C., und K. Suchy. „Generalization of the scattering theorem“. In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 90–121. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7915-5_4.
Der volle Inhalt der QuelleHuebener, R. P., E. Held, W. Klein und W. Metzger. „Imaging of Spatial Structures with Ballistic Phonons“. In Phonon Scattering in Condensed Matter V, 305–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82912-3_88.
Der volle Inhalt der QuelleKuo, S. J., und M. G. Raymer. „Spatial Quantum Fluctuations in Stimulated Raman Scattering“. In Coherence and Quantum Optics VI, 627–30. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_115.
Der volle Inhalt der QuelleAltman, C., und K. Suchy. „From scattering theorem to Lorentz reciprocity“. In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 151–74. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1530-1_5.
Der volle Inhalt der QuelleAltman, C., und K. Suchy. „From scattering theorem to Lorentz reciprocity“. In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 160–84. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7915-5_6.
Der volle Inhalt der QuelleGeernaert, Gerald L. „Temporal and Spatial Variability of the Wind Stress Vector“. In Radar Scattering from Modulated Wind Waves, 89–104. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2309-6_9.
Der volle Inhalt der QuelleThompson, A. Richard, James M. Moran und George W. Swenson. „Van Cittert–Zernike Theorem, Spatial Coherence, and Scattering“. In Astronomy and Astrophysics Library, 767–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44431-4_15.
Der volle Inhalt der QuelleBertolotti, M., M. Angelis, C. Sibilia und R. Horak. „Spatial Photon Correlation and Statistics of Nonlinear Processes in Nonlinear Waveguides“. In Light Scattering and Photon Correlation Spectroscopy, 231–46. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5586-1_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spatial scattering"
Baboiu, D. M., R. Fuerst, B. Lawrence, W. E. Torruellas und G. I. Stegeman. „Spatial Modulational Instability in a Quadratic Medium: Theory and Experiment“. In Photon Correlation and Scattering. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/pcs.1996.sub.1.
Der volle Inhalt der QuelleVicari, L. „Dielectric Behavior Of Polymer Dispersed Liquid Crystals“. In Spatial Light Modulators. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/slmo.1997.stue.1.
Der volle Inhalt der QuelleZachhuber, Bernhard, Christoph Gasser, Engelene t. H. Chrysostom und Bernhard Lendl. „Stand-off Spatial Offset Raman Scattering“. In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/lacsea.2012.lt2b.4.
Der volle Inhalt der QuelleTeo, T. J., und J. M. Reid. „Spatial/Frequency Diversity in Inverse Scattering“. In IEEE 1985 Ultrasonics Symposium. IEEE, 1985. http://dx.doi.org/10.1109/ultsym.1985.198621.
Der volle Inhalt der QuelleYang, ChunPing, Jian Wu, Yong Han, XiuLan He und Jie Leng. „On the approximate model of scattering radiance for cloudless sky“. In Second International Conference on Spatial Information Technology, herausgegeben von Cheng Wang, Shan Zhong und Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.773441.
Der volle Inhalt der QuelleBristow, Thomas C. „Surface Measurements and Frequency Analysis“. In Surface Roughness and Scattering. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/surs.1992.smb2.
Der volle Inhalt der QuelleYang, Jin, Dong-mei Yan, Chao Wang und Hong Zhang. „Feature extraction of attributed scattering centers on high resolution SAR imagery“. In Second International Conference on Spatial Information Technology, herausgegeben von Cheng Wang, Shan Zhong und Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.773984.
Der volle Inhalt der QuelleZhang, Lai, Alistair D. Bounds, James P. Fleming und John M. Girkin. „Monitoring of surgical wound healing using spatial frequency domain imaging“. In Biomedical Applications of Light Scattering XII, herausgegeben von Adam Wax und Vadim Backman. SPIE, 2022. http://dx.doi.org/10.1117/12.2608558.
Der volle Inhalt der QuelleChen, Ping, Xing Cai, Jianxin Han und Tianlin Dong. „A simplified method for electromagnetic scattering from periodic surface of lossy media“. In Second International Conference on Spatial Information Technology, herausgegeben von Cheng Wang, Shan Zhong und Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.774005.
Der volle Inhalt der QuelleHuo, Chaoying, Zhihe Xiao, Hongmei Ren und Hongcheng Yin. „Quasi-dynamic electromagnetic scattering characteristic simulation and analysis of space satellite targets“. In Second International Conference on Spatial Information Technology, herausgegeben von Cheng Wang, Shan Zhong und Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.774186.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Spatial scattering"
Cable, J. (Neutron scattering studies of spatial correlations in Fe-V and Fe-Cr alloys). Office of Scientific and Technical Information (OSTI), Mai 1990. http://dx.doi.org/10.2172/6979180.
Der volle Inhalt der QuelleBrower, K. L. Apparent spatial blurring and displacement of a point optical source due to cloud scattering. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/534517.
Der volle Inhalt der QuelleWilson, D., Vladimir Ostashev und Max Krackow. Phase-modulated Rice model for statistical distributions of complex signals. Engineer Research and Development Center (U.S.), August 2023. http://dx.doi.org/10.21079/11681/47379.
Der volle Inhalt der QuelleToncy, Michael F., Joseph G. Cordon, Mahesh G. Samant, Gary L. Borges und Larry B. Sorensen. Surface X-Ray Scattering Measurements of the Substrate Induced Spatial Modulation of an Incommensurate Adsorbed Monolayer. Fort Belvoir, VA: Defense Technical Information Center, Januar 1991. http://dx.doi.org/10.21236/ada232625.
Der volle Inhalt der QuelleHayward, Jason, und Michael Moore. Neutron Scattering Instrumentation Research and Development for High Spatial and Temporal Resolution Imaging at Oak Ridge National Laboratory. Office of Scientific and Technical Information (OSTI), Oktober 2019. http://dx.doi.org/10.2172/1601767.
Der volle Inhalt der QuelleDasberg, Shmuel, Jan W. Hopmans, Larry J. Schwankl und Dani Or. Drip Irrigation Management by TDR Monitoring of Soil Water and Solute Distribution. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568095.bard.
Der volle Inhalt der Quelle