Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Sparse Bayesian learning (SBL).

Dissertationen zum Thema „Sparse Bayesian learning (SBL)“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-17 Dissertationen für die Forschung zum Thema "Sparse Bayesian learning (SBL)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chen, Cong. „High-Dimensional Generative Models for 3D Perception“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103948.

Der volle Inhalt der Quelle
Annotation:
Modern robotics and automation systems require high-level reasoning capability in representing, identifying, and interpreting the three-dimensional data of the real world. Understanding the world's geometric structure by visual data is known as 3D perception. The necessity of analyzing irregular and complex 3D data has led to the development of high-dimensional frameworks for data learning. Here, we design several sparse learning-based approaches for high-dimensional data that effectively tackle multiple perception problems, including data filtering, data recovery, and data retrieval. The frameworks offer generative solutions for analyzing complex and irregular data structures without prior knowledge of data. The first part of the dissertation proposes a novel method that simultaneously filters point cloud noise and outliers as well as completing missing data by utilizing a unified framework consisting of a novel tensor data representation, an adaptive feature encoder, and a generative Bayesian network. In the next section, a novel multi-level generative chaotic Recurrent Neural Network (RNN) has been proposed using a sparse tensor structure for image restoration. In the last part of the dissertation, we discuss the detection followed by localization, where we discuss extracting features from sparse tensors for data retrieval.
Doctor of Philosophy
The development of automation systems and robotics brought the modern world unrivaled affluence and convenience. However, the current automated tasks are mainly simple repetitive motions. Tasks that require more artificial capability with advanced visual cognition are still an unsolved problem for automation. Many of the high-level cognition-based tasks require the accurate visual perception of the environment and dynamic objects from the data received from the optical sensor. The capability to represent, identify and interpret complex visual data for understanding the geometric structure of the world is 3D perception. To better tackle the existing 3D perception challenges, this dissertation proposed a set of generative learning-based frameworks on sparse tensor data for various high-dimensional robotics perception applications: underwater point cloud filtering, image restoration, deformation detection, and localization. Underwater point cloud data is relevant for many applications such as environmental monitoring or geological exploration. The data collected with sonar sensors are however subjected to different types of noise, including holes, noise measurements, and outliers. In the first chapter, we propose a generative model for point cloud data recovery using Variational Bayesian (VB) based sparse tensor factorization methods to tackle these three defects simultaneously. In the second part of the dissertation, we propose an image restoration technique to tackle missing data, which is essential for many perception applications. An efficient generative chaotic RNN framework has been introduced for recovering the sparse tensor from a single corrupted image for various types of missing data. In the last chapter, a multi-level CNN for high-dimension tensor feature extraction for underwater vehicle localization has been proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Higson, Edward John. „Bayesian methods and machine learning in astrophysics“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289728.

Der volle Inhalt der Quelle
Annotation:
This thesis is concerned with methods for Bayesian inference and their applications in astrophysics. We principally discuss two related themes: advances in nested sampling (Chapters 3 to 5), and Bayesian sparse reconstruction of signals from noisy data (Chapters 6 and 7). Nested sampling is a popular method for Bayesian computation which is widely used in astrophysics. Following the introduction and background material in Chapters 1 and 2, Chapter 3 analyses the sampling errors in nested sampling parameter estimation and presents a method for estimating them numerically for a single nested sampling calculation. Chapter 4 introduces diagnostic tests for detecting when software has not performed the nested sampling algorithm accurately, for example due to missing a mode in a multimodal posterior. The uncertainty estimates and diagnostics in Chapters 3 and 4 are implemented in the $\texttt{nestcheck}$ software package, and both chapters describe an astronomical application of the techniques introduced. Chapter 5 describes dynamic nested sampling: a generalisation of the nested sampling algorithm which can produce large improvements in computational efficiency compared to standard nested sampling. We have implemented dynamic nested sampling in the $\texttt{dyPolyChord}$ and $\texttt{perfectns}$ software packages. Chapter 6 presents a principled Bayesian framework for signal reconstruction, in which the signal is modelled by basis functions whose number (and form, if required) is determined by the data themselves. This approach is based on a Bayesian interpretation of conventional sparse reconstruction and regularisation techniques, in which sparsity is imposed through priors via Bayesian model selection. We demonstrate our method for noisy 1- and 2-dimensional signals, including examples of processing astronomical images. The numerical implementation uses dynamic nested sampling, and uncertainties are calculated using the methods introduced in Chapters 3 and 4. Chapter 7 applies our Bayesian sparse reconstruction framework to artificial neural networks, where it allows the optimum network architecture to be determined by treating the number of nodes and hidden layers as parameters. We conclude by suggesting possible areas of future research in Chapter 8.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jin, Junyang. „Novel methods for biological network inference : an application to circadian Ca2+ signaling network“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285323.

Der volle Inhalt der Quelle
Annotation:
Biological processes involve complex biochemical interactions among a large number of species like cells, RNA, proteins and metabolites. Learning these interactions is essential to interfering artificially with biological processes in order to, for example, improve crop yield, develop new therapies, and predict new cell or organism behaviors to genetic or environmental perturbations. For a biological process, two pieces of information are of most interest. For a particular species, the first step is to learn which other species are regulating it. This reveals topology and causality. The second step involves learning the precise mechanisms of how this regulation occurs. This step reveals the dynamics of the system. Applying this process to all species leads to the complete dynamical network. Systems biology is making considerable efforts to learn biological networks at low experimental costs. The main goal of this thesis is to develop advanced methods to build models for biological networks, taking the circadian system of Arabidopsis thaliana as a case study. A variety of network inference approaches have been proposed in the literature to study dynamic biological networks. However, many successful methods either require prior knowledge of the system or focus more on topology. This thesis presents novel methods that identify both network topology and dynamics, and do not depend on prior knowledge. Hence, the proposed methods are applicable to general biological networks. These methods are initially developed for linear systems, and, at the cost of higher computational complexity, can also be applied to nonlinear systems. Overall, we propose four methods with increasing computational complexity: one-to-one, combined group and element sparse Bayesian learning (GESBL), the kernel method and reversible jump Markov chain Monte Carlo method (RJMCMC). All methods are tested with challenging dynamical network simulations (including feedback, random networks, different levels of noise and number of samples), and realistic models of circadian system of Arabidopsis thaliana. These simulations show that, while the one-to-one method scales to the whole genome, the kernel method and RJMCMC method are superior for smaller networks. They are robust to tuning variables and able to provide stable performance. The simulations also imply the advantage of GESBL and RJMCMC over the state-of-the-art method. We envision that the estimated models can benefit a wide range of research. For example, they can locate biological compounds responsible for human disease through mathematical analysis and help predict the effectiveness of new treatments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Subramanian, Harshavardhan. „Combining scientific computing and machine learning techniques to model longitudinal outcomes in clinical trials“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176427.

Der volle Inhalt der Quelle
Annotation:
Scientific machine learning (SciML) is a new branch of AI research at the edge of scientific computing (Sci) and machine learning (ML). It deals with efficient amalgamation of data-driven algorithms along with scientific computing to discover the dynamics of the time-evolving process. The output of such algorithms is represented in the form of a governing equation(s) (e.g., ordinary differential equation(s), ODE(s)), which one can solve then for any time point and, thus, obtain a rigorous prediction.  In this thesis, we present a methodology on how to incorporate the SciML approach in the context of clinical trials to predict IPF disease progression in the form of governing equation. Our proposed methodology also quantifies the uncertainties associated with the model by fitting 95\% high density interval (HDI) for the ODE parameters and 95\% posterior prediction interval for posterior predicted samples. We have also investigated the possibility of predicting later outcomes by using the observations collected at early phase of the study. We were successful in combining ML techniques, statistical methodologies and scientific computing tools such as bootstrap sampling, cubic spline interpolation, Bayesian inference and sparse identification of nonlinear dynamics (SINDy) to discover the dynamics behind the efficacy outcome as well as in quantifying the uncertainty of the parameters of the governing equation in the form of 95 \% HDI intervals. We compared the resulting model with the existed disease progression model described by the Weibull function. Based on the mean squared error (MSE) criterion between our ODE approximated values and population means of respective datasets, we achieved the least possible MSE of 0.133,0.089,0.213 and 0.057. After comparing these MSE values with the MSE values obtained after using Weibull function, for the third dataset and pooled dataset, our ODE model performed better in reducing error than the Weibull baseline model by 7.5\% and 8.1\%, respectively. Whereas for the first and second datasets, the Weibull model performed better in reducing errors by 1.5\% and 1.2\%, respectively. Comparing the overall performance in terms of MSE, our proposed model approximates the population means better in all the cases except for the first and second datasets, assuming the latter case's error margin is very small. Also, in terms of interpretation, our dynamical system model contains the mechanistic elements that can explain the decay/acceleration rate of the efficacy endpoint, which is missing in the Weibull model. However, our approach had a limitation in predicting final outcomes using a model derived from  24, 36, 48 weeks observations with good accuracy where as on the contrast, the Weibull model do not possess the predicting capability. However, the extrapolated trend based on 60 weeks of data was found to be close to population mean and the ODE model built on 72 weeks of data. Finally we highlight potential questions for the future work.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Francisco, André Biasin Segalla. „Esparsidade estruturada em reconstrução de fontes de EEG“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-13052018-112615/.

Der volle Inhalt der Quelle
Annotation:
Neuroimagiologia funcional é uma área da neurociência que visa o desenvolvimento de diversas técnicas para mapear a atividade do sistema nervoso e esteve sob constante desenvolvimento durante as últimas décadas devido à sua grande importância para aplicações clínicas e pesquisa. Técnicas usualmente utilizadas, como imagem por ressonância magnética functional (fMRI) e tomografia por emissão de pósitrons (PET) têm ótima resolução espacial (~ mm), mas uma resolução temporal limitada (~ s), impondo um grande desafio para nossa compreensão a respeito da dinâmica de funções cognitivas mais elevadas, cujas oscilações podem ocorrer em escalas temporais muito mais finas (~ ms). Tal limitação ocorre pelo fato destas técnicas medirem respostas biológicas lentas que são correlacionadas de maneira indireta com a atividade elétrica cerebral. As duas principais técnicas capazes de superar essa limitação são a Eletro- e Magnetoencefalografia (EEG/MEG), que são técnicas não invasivas para medir os campos elétricos e magnéticos no escalpo, respectivamente, gerados pelas fontes elétricas cerebrais. Ambas possuem resolução temporal na ordem de milisegundo, mas tipicalmente uma baixa resolução espacial (~ cm) devido à natureza mal posta do problema inverso eletromagnético. Um imenso esforço vem sendo feito durante as últimas décadas para melhorar suas resoluções espaciais através da incorporação de informação relevante ao problema de outras técnicas de imagens e/ou de vínculos biologicamente inspirados aliados ao desenvolvimento de métodos matemáticos e algoritmos sofisticados. Neste trabalho focaremos em EEG, embora todas técnicas aqui apresentadas possam ser igualmente aplicadas ao MEG devido às suas formas matemáticas idênticas. Em particular, nós exploramos esparsidade como uma importante restrição matemática dentro de uma abordagem Bayesiana chamada Aprendizagem Bayesiana Esparsa (SBL), que permite a obtenção de soluções únicas significativas no problema de reconstrução de fontes. Além disso, investigamos como incorporar diferentes estruturas como graus de liberdade nesta abordagem, que é uma aplicação de esparsidade estruturada e mostramos que é um caminho promisor para melhorar a precisão de reconstrução de fontes em métodos de imagens eletromagnéticos.
Functional Neuroimaging is an area of neuroscience which aims at developing several techniques to map the activity of the nervous system and has been under constant development in the last decades due to its high importance in clinical applications and research. Common applied techniques such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have great spatial resolution (~ mm), but a limited temporal resolution (~ s), which poses a great challenge on our understanding of the dynamics of higher cognitive functions, whose oscillations can occur in much finer temporal scales (~ ms). Such limitation occurs because these techniques rely on measurements of slow biological responses which are correlated in a complicated manner to the actual electric activity. The two major candidates that overcome this shortcoming are Electro- and Magnetoencephalography (EEG/MEG), which are non-invasive techniques that measure the electric and magnetic fields on the scalp, respectively, generated by the electrical brain sources. Both have millisecond temporal resolution, but typically low spatial resolution (~ cm) due to the highly ill-posed nature of the electromagnetic inverse problem. There has been a huge effort in the last decades to improve their spatial resolution by means of incorporating relevant information to the problem from either other imaging modalities and/or biologically inspired constraints allied with the development of sophisticated mathematical methods and algorithms. In this work we focus on EEG, although all techniques here presented can be equally applied to MEG because of their identical mathematical form. In particular, we explore sparsity as a useful mathematical constraint in a Bayesian framework called Sparse Bayesian Learning (SBL), which enables the achievement of meaningful unique solutions in the source reconstruction problem. Moreover, we investigate how to incorporate different structures as degrees of freedom into this framework, which is an application of structured sparsity and show that it is a promising way to improve the source reconstruction accuracy of electromagnetic imaging methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cherief-Abdellatif, Badr-Eddine. „Contributions to the theoretical study of variational inference and robustness“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAG001.

Der volle Inhalt der Quelle
Annotation:
Cette thèse de doctorat traite de l'inférence variationnelle et de la robustesse en statistique et en machine learning. Plus précisément, elle se concentre sur les propriétés statistiques des approximations variationnelles et sur la conception d'algorithmes efficaces pour les calculer de manière séquentielle, et étudie les estimateurs basés sur le Maximum Mean Discrepancy comme règles d'apprentissage qui sont robustes à la mauvaise spécification du modèle.Ces dernières années, l'inférence variationnelle a été largement étudiée du point de vue computationnel, cependant, la littérature n'a accordé que peu d'attention à ses propriétés théoriques jusqu'à très récemment. Dans cette thèse, nous étudions la consistence des approximations variationnelles dans divers modèles statistiques et les conditions qui assurent leur consistence. En particulier, nous abordons le cas des modèles de mélange et des réseaux de neurones profonds. Nous justifions également d'un point de vue théorique l'utilisation de la stratégie de maximisation de l'ELBO, un critère numérique qui est largement utilisé dans la communauté VB pour la sélection de modèle et dont l'efficacité a déjà été confirmée en pratique. En outre, l'inférence Bayésienne offre un cadre d'apprentissage en ligne attrayant pour analyser des données séquentielles, et offre des garanties de généralisation qui restent valables même en cas de mauvaise spécification des modèles et en présence d'adversaires. Malheureusement, l'inférence Bayésienne exacte est rarement tractable en pratique et des méthodes d'approximation sont généralement employées, mais ces méthodes préservent-elles les propriétés de généralisation de l'inférence Bayésienne ? Dans cette thèse, nous montrons que c'est effectivement le cas pour certains algorithmes d'inférence variationnelle (VI). Nous proposons de nouveaux algorithmes tempérés en ligne et nous en déduisons des bornes de généralisation. Notre résultat théorique repose sur la convexité de l'objectif variationnel, mais nous soutenons que notre résultat devrait être plus général et présentons des preuves empiriques à l'appui. Notre travail donne des justifications théoriques en faveur des algorithmes en ligne qui s'appuient sur des méthodes Bayésiennes approchées.Une autre question d'intérêt majeur en statistique qui est abordée dans cette thèse est la conception d'une procédure d'estimation universelle. Cette question est d'un intérêt majeur, notamment parce qu'elle conduit à des estimateurs robustes, un thème d'actualité en statistique et en machine learning. Nous abordons le problème de l'estimation universelle en utilisant un estimateur de minimisation de distance basé sur la Maximum Mean Discrepancy. Nous montrons que l'estimateur est robuste à la fois à la dépendance et à la présence de valeurs aberrantes dans le jeu de données. Nous mettons également en évidence les liens qui peuvent exister avec les estimateurs de minimisation de distance utilisant la distance L2. Enfin, nous présentons une étude théorique de l'algorithme de descente de gradient stochastique utilisé pour calculer l'estimateur, et nous étayons nos conclusions par des simulations numériques. Nous proposons également une version Bayésienne de notre estimateur, que nous étudions à la fois d'un point de vue théorique et d'un point de vue computationnel
This PhD thesis deals with variational inference and robustness. More precisely, it focuses on the statistical properties of variational approximations and the design of efficient algorithms for computing them in an online fashion, and investigates Maximum Mean Discrepancy based estimators as learning rules that are robust to model misspecification.In recent years, variational inference has been extensively studied from the computational viewpoint, but only little attention has been put in the literature towards theoretical properties of variational approximations until very recently. In this thesis, we investigate the consistency of variational approximations in various statistical models and the conditions that ensure the consistency of variational approximations. In particular, we tackle the special case of mixture models and deep neural networks. We also justify in theory the use of the ELBO maximization strategy, a model selection criterion that is widely used in the Variational Bayes community and is known to work well in practice.Moreover, Bayesian inference provides an attractive online-learning framework to analyze sequential data, and offers generalization guarantees which hold even under model mismatch and with adversaries. Unfortunately, exact Bayesian inference is rarely feasible in practice and approximation methods are usually employed, but do such methods preserve the generalization properties of Bayesian inference? In this thesis, we show that this is indeed the case for some variational inference algorithms. We propose new online, tempered variational algorithms and derive their generalization bounds. Our theoretical result relies on the convexity of the variational objective, but we argue that our result should hold more generally and present empirical evidence in support of this. Our work presents theoretical justifications in favor of online algorithms that rely on approximate Bayesian methods. Another point that is addressed in this thesis is the design of a universal estimation procedure. This question is of major interest, in particular because it leads to robust estimators, a very hot topic in statistics and machine learning. We tackle the problem of universal estimation using a minimum distance estimator based on the Maximum Mean Discrepancy. We show that the estimator is robust to both dependence and to the presence of outliers in the dataset. We also highlight the connections that may exist with minimum distance estimators using L2-distance. Finally, we provide a theoretical study of the stochastic gradient descent algorithm used to compute the estimator, and we support our findings with numerical simulations. We also propose a Bayesian version of our estimator, that we study from both a theoretical and a computational points of view
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Le, Folgoc Loïc. „Apprentissage statistique pour la personnalisation de modèles cardiaques à partir de données d’imagerie“. Thesis, Nice, 2015. http://www.theses.fr/2015NICE4098/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse porte sur un problème de calibration d'un modèle électromécanique de cœur, personnalisé à partir de données d'imagerie médicale 3D+t ; et sur celui - en amont - de suivi du mouvement cardiaque. A cette fin, nous adoptons une méthodologie fondée sur l'apprentissage statistique. Pour la calibration du modèle mécanique, nous introduisons une méthode efficace mêlant apprentissage automatique et une description statistique originale du mouvement cardiaque utilisant la représentation des courants 3D+t. Notre approche repose sur la construction d'un modèle statistique réduit reliant l'espace des paramètres mécaniques à celui du mouvement cardiaque. L'extraction du mouvement à partir d'images médicales avec quantification d'incertitude apparaît essentielle pour cette calibration, et constitue l'objet de la seconde partie de cette thèse. Plus généralement, nous développons un modèle bayésien parcimonieux pour le problème de recalage d'images médicales. Notre contribution est triple et porte sur un modèle étendu de similarité entre images, sur l'ajustement automatique des paramètres du recalage et sur la quantification de l'incertitude. Nous proposons une technique rapide d'inférence gloutonne, applicable à des données cliniques 4D. Enfin, nous nous intéressons de plus près à la qualité des estimations d'incertitude fournies par le modèle. Nous comparons les prédictions du schéma d'inférence gloutonne avec celles données par une procédure d'inférence fidèle au modèle, que nous développons sur la base de techniques MCMC. Nous approfondissons les propriétés théoriques et empiriques du modèle bayésien parcimonieux et des deux schémas d'inférence
This thesis focuses on the calibration of an electromechanical model of the heart from patient-specific, image-based data; and on the related task of extracting the cardiac motion from 4D images. Long-term perspectives for personalized computer simulation of the cardiac function include aid to the diagnosis, aid to the planning of therapy and prevention of risks. To this end, we explore tools and possibilities offered by statistical learning. To personalize cardiac mechanics, we introduce an efficient framework coupling machine learning and an original statistical representation of shape & motion based on 3D+t currents. The method relies on a reduced mapping between the space of mechanical parameters and the space of cardiac motion. The second focus of the thesis is on cardiac motion tracking, a key processing step in the calibration pipeline, with an emphasis on quantification of uncertainty. We develop a generic sparse Bayesian model of image registration with three main contributions: an extended image similarity term, the automated tuning of registration parameters and uncertainty quantification. We propose an approximate inference scheme that is tractable on 4D clinical data. Finally, we wish to evaluate the quality of uncertainty estimates returned by the approximate inference scheme. We compare the predictions of the approximate scheme with those of an inference scheme developed on the grounds of reversible jump MCMC. We provide more insight into the theoretical properties of the sparse structured Bayesian model and into the empirical behaviour of both inference schemes
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Dang, Hong-Phuong. „Approches bayésiennes non paramétriques et apprentissage de dictionnaire pour les problèmes inverses en traitement d'image“. Thesis, Ecole centrale de Lille, 2016. http://www.theses.fr/2016ECLI0019/document.

Der volle Inhalt der Quelle
Annotation:
L'apprentissage de dictionnaire pour la représentation parcimonieuse est bien connu dans le cadre de la résolution de problèmes inverses. Les méthodes d'optimisation et les approches paramétriques ont été particulièrement explorées. Ces méthodes rencontrent certaines limitations, notamment liées au choix de paramètres. En général, la taille de dictionnaire doit être fixée à l'avance et une connaissance des niveaux de bruit et éventuellement de parcimonie sont aussi nécessaires. Les contributions méthodologies de cette thèse concernent l'apprentissage conjoint du dictionnaire et de ces paramètres, notamment pour les problèmes inverses en traitement d'image. Nous étudions et proposons la méthode IBP-DL (Indien Buffet Process for Dictionary Learning) en utilisant une approche bayésienne non paramétrique. Une introduction sur les approches bayésiennes non paramétriques est présentée. Le processus de Dirichlet et son dérivé, le processus du restaurant chinois, ainsi que le processus Bêta et son dérivé, le processus du buffet indien, sont décrits. Le modèle proposé pour l'apprentissage de dictionnaire s'appuie sur un a priori de type Buffet Indien qui permet d'apprendre un dictionnaire de taille adaptative. Nous détaillons la méthode de Monte-Carlo proposée pour l'inférence. Le niveau de bruit et celui de la parcimonie sont aussi échantillonnés, de sorte qu'aucun réglage de paramètres n'est nécessaire en pratique. Des expériences numériques illustrent les performances de l'approche pour les problèmes du débruitage, de l'inpainting et de l'acquisition compressée. Les résultats sont comparés avec l'état de l'art.Le code source en Matlab et en C est mis à disposition
Dictionary learning for sparse representation has been widely advocated for solving inverse problems. Optimization methods and parametric approaches towards dictionary learning have been particularly explored. These methods meet some limitations, particularly related to the choice of parameters. In general, the dictionary size is fixed in advance, and sparsity or noise level may also be needed. In this thesis, we show how to perform jointly dictionary and parameter learning, with an emphasis on image processing. We propose and study the Indian Buffet Process for Dictionary Learning (IBP-DL) method, using a bayesian nonparametric approach.A primer on bayesian nonparametrics is first presented. Dirichlet and Beta processes and their respective derivatives, the Chinese restaurant and Indian Buffet processes are described. The proposed model for dictionary learning relies on an Indian Buffet prior, which permits to learn an adaptive size dictionary. The Monte-Carlo method for inference is detailed. Noise and sparsity levels are also inferred, so that in practice no parameter tuning is required. Numerical experiments illustrate the performances of the approach in different settings: image denoising, inpainting and compressed sensing. Results are compared with state-of-the art methods is made. Matlab and C sources are available for sake of reproducibility
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gerchinovitz, Sébastien. „Prédiction de suites individuelles et cadre statistique classique : étude de quelques liens autour de la régression parcimonieuse et des techniques d'agrégation“. Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00653550.

Der volle Inhalt der Quelle
Annotation:
Cette thèse s'inscrit dans le domaine de l'apprentissage statistique. Le cadre principal est celui de la prévision de suites déterministes arbitraires (ou suites individuelles), qui recouvre des problèmes d'apprentissage séquentiel où l'on ne peut ou ne veut pas faire d'hypothèses de stochasticité sur la suite des données à prévoir. Cela conduit à des méthodes très robustes. Dans ces travaux, on étudie quelques liens étroits entre la théorie de la prévision de suites individuelles et le cadre statistique classique, notamment le modèle de régression avec design aléatoire ou fixe, où les données sont modélisées de façon stochastique. Les apports entre ces deux cadres sont mutuels : certaines méthodes statistiques peuvent être adaptées au cadre séquentiel pour bénéficier de garanties déterministes ; réciproquement, des techniques de suites individuelles permettent de calibrer automatiquement des méthodes statistiques pour obtenir des bornes adaptatives en la variance du bruit. On étudie de tels liens sur plusieurs problèmes voisins : la régression linéaire séquentielle parcimonieuse en grande dimension (avec application au cadre stochastique), la régression linéaire séquentielle sur des boules L1, et l'agrégation de modèles non linéaires dans un cadre de sélection de modèles (régression avec design fixe). Enfin, des techniques stochastiques sont utilisées et développées pour déterminer les vitesses minimax de divers critères de performance séquentielle (regrets interne et swap notamment) en environnement déterministe ou stochastique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shi, Minghui. „Bayesian Sparse Learning for High Dimensional Data“. Diss., 2011. http://hdl.handle.net/10161/3869.

Der volle Inhalt der Quelle
Annotation:

In this thesis, we develop some Bayesian sparse learning methods for high dimensional data analysis. There are two important topics that are related to the idea of sparse learning -- variable selection and factor analysis. We start with Bayesian variable selection problem in regression models. One challenge in Bayesian variable selection is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In the first part of this thesis, instead of using MCMC, we propose a new computational approach based on sequential Monte Carlo (SMC), which we refer to as particle stochastic search (PSS). We illustrate PSS through applications to linear regression and probit models.

Besides the Bayesian stochastic search algorithms, there is a rich literature on shrinkage and variable selection methods for high dimensional regression and classification with vector-valued parameters, such as lasso (Tibshirani, 1996) and the relevance vector machine (Tipping, 2001). Comparing with the Bayesian stochastic search algorithms, these methods does not account for model uncertainty but are more computationally efficient. In the second part of this thesis, we generalize this type of ideas to matrix valued parameters and focus on developing efficient variable selection method for multivariate regression. We propose a Bayesian shrinkage model (BSM) and an efficient algorithm for learning the associated parameters .

In the third part of this thesis, we focus on the topic of factor analysis which has been widely used in unsupervised learnings. One central problem in factor analysis is related to the determination of the number of latent factors. We propose some Bayesian model selection criteria for selecting the number of latent factors based on a graphical factor model. As it is illustrated in Chapter 4, our proposed method achieves good performance in correctly selecting the number of factors in several different settings. As for application, we implement the graphical factor model for several different purposes, such as covariance matrix estimation, latent factor regression and classification.


Dissertation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Huang, Din-Hwa, und 黃汀華. „Basis Adaptive Sparse Bayesian Learning : Algorithms and Applications“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/6n47p5.

Der volle Inhalt der Quelle
Annotation:
博士
國立交通大學
電信工程研究所
103
Sparse Bayesian learning (SBL) is a widely used compressive sensing (CS) method that finds the solution by Bayesian inference. In this approach, a basis function is specified to form the transform matrix. For a particular application, it may exist a proper basis, with known model function and unknown parameters, which can convert the signal to a sparse domain. In conventional SBL, the parameters of the basis are assumed to be known as priori. This assumption may not be valid in real-world applications, and the efficacy of conventional SBL approaches can be greatly affected. In this dissertation, we propose a basis-adaptive-sparse-Bayesian-learning (BA-SBL) framework, which can estimate the basis and system parameters, alternatively and iteratively, to solve the problem. Possible applications are also explored. We start the work with the cooperative spectrum sensing problem in cognitive radio (CR) systems. It is known that in addition to spectrum sparsity, spatial sparsity can also be used to further enhance spectral utilization. To achieve that, secondary users (SUs) must know the locations and signal-strength distributions of primary-users’ base-stations (PUBSs), which is referred to as radio source positioning and power-propagation-map (PPM) reconstruction. Conventional approaches approximate PUBSs’ power decay with a path-loss model (PLM) and assume PUBSs’ locations on some grid points. However, the parameters of the PLM have to be known in advance and the estimation accuracy is bounded by the resolution of the grid points. We first employ a Laplacian function to model the PUBS power decay profile and propose a BA-SBL scheme to estimate corresponding parameters. With the proposed method, little priori information is required. To further enhance the performance, we incorporate source number detection methods such that the number of the PUBSs can be precisely detected. Simulations show that the proposed algorithm has satisfactory performance even when the spatial measurement rate is low. While the proposed BA-SBL scheme can effectively reconstruct the PPM in CR systems, it can only be applied in one frequency band at a time, and the frequency-band dependence is not considered. To fill the gap, we then extend the Laplacian function to the multiple-band scenario. For a multi-band Laplacian function, its correlation between different bands is taken into consideration by a block SBL (BSBL) method. The BA-SBL is then modified and extended to a basis-adaptive BSBL (BA-BSBL) scheme, simultaneously reconstructing the PPMs of multiple frequency bands. Simulations show that BA-BSBL outperforms BA-SBL applied to each band, independently. Finally, we apply the proposed BA-BSBL procedure to the positioning problem in the 3rdgeneration-partnership-project (3GPP) long-term-evolution (LTE) systems. The observed-timedifference-of-arrival (OTDOA) method is used to estimate the location of user-element (UE). It uses the estimated time-of-arrivals (TOAs) from three different base stations (BSs) as the observations. The TOA corresponding to a BS can be obtained by the first-tap delay of the time-domain channel response. The main problem of conventional OTDOA methods is that the precision of TOA estimation, obtained by a channel estimation method, is limited by the quantization effect of the receiver’s sampler. Since wireless channels are generally spare, we can then formulate the time-domain channel estimation as a CS problem. Using the pulseshaping-filter response as the basis, we apply the proposed BA-BSBL procedure to conduct the channel estimation, and the TOA can be estimated without quantization. Simulations show that the proposed BA-BSBL algorithm can significantly enhance the precision of TOA estimation and then improve the positioning performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Huang, Wen-Han, und 黃玟翰. „Three-dimensional probabilistic site characterization by sparse Bayesian learning“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/6u62y3.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺灣大學
土木工程學研究所
107
This study investigated the modified cone tip resistance (qt) data from cone penetration tests (CPT). The feasibility and method of identifying the trend function were also discussed. The vertical spatial distribution is expressed as a depth-dependent trend function and a zero-mean spatial variation. Trend function can help us catch soil properties in space. Spatial variation can be estimated by standard deviation (σ) and scale of fluctuation (δ). In addition to the vertical scale of fluctuation, in 3D case, horizontal scale of fluctuation is also important. However, the number of horizontal data is much less than that of the vertical data. Horizontal scale of fluctuation is hard to be estimated. The estimation of the horizontal parameter is difficult. Another problem is that when analyzing multiple data at a time, the matrix becomes very huge, increasing the computation and even exceeding the load of the memory. We use Cholesky decomposition and Kronecker product to simplify the matrix. In this way, we can greatly reduce the computation. This study uses a two-step Bayesian analysis to identify trend functions. The first step is to select the basis functions we need by sparse Bayesian learning. In this study, we also consider the effects of different kinds of basis functions. The second step is to use transitional Markov chain Monte Carlo (TMCMC; Ching and Chen, 2007) as a method for estimating the parameters of the random field. Through the above two steps, we can fit the trend function and model the random field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Huang, Han-Shen, und 黃漢申. „Learning from Sparse Data: An Approach to Parameter Learning in Bayesian Networks“. Thesis, 2003. http://ndltd.ncl.edu.tw/handle/18831073237145141413.

Der volle Inhalt der Quelle
Annotation:
博士
國立臺灣大學
資訊工程學研究所
91
Many newly-emerging applications with small and incomplete (sparse for abbreviation) data sets present new challenges to machine learning. For example, we would like to have a model that can accurately predict the possibility of domestic terrorist incidents and attack terrorism in advance. Such incidents are rare, but always bring severe impact once they really happen. In addition, the relevant symptoms may be unknown, unobserved, and different case by case. Therefore, learning accurate models from this kind of sparse data is difficult, but very meaningful and important. One way to deal with such situations is to learn probabilistic models from sparse data sets. Probability theory is well-founded for domains with uncertainty and for data sets with missing values. We use the Bayesian network as the modeling tool because of its clear semantics for human experts. The network structure can be determined by the domain experts, showing the causal relations between features. Then, the parameters can be learned from data sets, which is more tedious for human experts. This thesis proposes a search-based approach to the parameter learning problem in Bayesian networks from sparse training sets. A search-based solution consists of the metric and the search algorithm. The most frequently used solution is to search on the data likelihood metric based on Maximum-Likelihood estimation (ML) with the Expectation-Maximization (EM) algorithm or the gradient ascent algorithm. However, our analysis shows that the ML learning for sparse data tends to over/underestimate the probabilities for low/high-frequency states of multinomial random variables. Therefore, we propose Entropic Rectification Function (ERF) to rectify the deviation without prior information about the application domain. The general EM-based framework for penalized data likelihood function, Penalized EM (PEM) algorithm, can search on ERF, but time-consuming numerical methods are required in the M-step. To accelerate the computation, we propose Fixed-Point PEM (FPEM) algorithm, in which there is a closed-form solution for the M-step based on the framework of the fixed-point iteration method. We show that ERF outperforms the data likelihood metric by leading the search algorithms to stop at the estimates with smaller KL divergences to the true distribution, and FPEM outperforms PEM by searching out local maxima faster. In addition, ERF can also be used to learn other probabilistic models with multinomial distributions, like Hidden Markov model. FPEM can search on other penalized data likelihood metrics as well.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kuen-FengLee und 李昆峯. „Construction of Document Model and Language Model Using Bayesian Sparse Learning“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/57056195766494950616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Prasad, Ranjitha. „Sparse Bayesian Learning For Joint Channel Estimation Data Detection In OFDM Systems“. Thesis, 2015. http://etd.iisc.ernet.in/2005/3997.

Der volle Inhalt der Quelle
Annotation:
Bayesian approaches for sparse signal recovery have enjoyed a long-standing history in signal processing and machine learning literature. Among the Bayesian techniques, the expectation maximization based Sparse Bayesian Learning(SBL) approach is an iterative procedure with global convergence guarantee to a local optimum, which uses a parameterized prior that encourages sparsity under an evidence maximization frame¬work. SBL has been successfully employed in a wide range of applications ranging from image processing to communications. In this thesis, we propose novel, efficient and low-complexity SBL-based algorithms that exploit structured sparsity in the presence of fully/partially known measurement matrices. We apply the proposed algorithms to the problem of channel estimation and data detection in Orthogonal Frequency Division Multiplexing(OFDM) systems. Further, we derive Cram´er Rao type lower Bounds(CRB) for the single and multiple measurement vector SBL problem of estimating compressible vectors and their prior distribution parameters. The main contributions of the thesis are as follows: We derive Hybrid, Bayesian and Marginalized Cram´er Rao lower bounds for the problem of estimating compressible vectors drawn from a Student-t prior distribution. We derive CRBs that encompass the deterministic or random nature of the unknown parameters of the prior distribution and the regression noise variance. We use the derived bounds to uncover the relationship between the compressibility and Mean Square Error(MSE) in the estimates. Through simulations, we demonstrate the dependence of the MSE performance of SBL based estimators on the compressibility of the vector. OFDM is a well-known multi-carrier modulation technique that provides high spectral efficiency and resilience to multi-path distortion of the wireless channel It is well-known that the impulse response of a wideband wireless channel is approximately sparse, in the sense that it has a small number of significant components relative to the channel delay spread. In this thesis, we consider the estimation of the unknown channel coefficients and its support in SISO-OFDM systems using a SBL framework. We propose novel pilot-only and joint channel estimation and data detection algorithms in block-fading and time-varying scenarios. In the latter case, we use a first order auto-regressive model for the time-variations, and propose recursive, low-complexity Kalman filtering based algorithms for channel estimation. Monte Carlo simulations illustrate the efficacy of the proposed techniques in terms of the MSE and coded bit error rate performance. • Multiple Input Multiple Output(MIMO) combined with OFDM harnesses the inherent advantages of OFDM along with the diversity and multiplexing advantages of a MIMO system. The impulse response of wireless channels between the Nt transmit and Nr receive antennas of a MIMO-OFDM system are group approximately sparse(ga-sparse),i.e. ,the Nt Nr channels have a small number of significant paths relative to the channel delay spread, and the time-lags of the significant paths between transmit and receive antenna pairs coincide. Often, wire¬less channels are also group approximately-cluster sparse(ga-csparse),i.e.,every ga-sparse channel consists of clusters, where a few clusters have all strong components while most clusters have all weak components. In this thesis, we cast the problem of estimating the ga-sparse and ga-csparse block-fading and time-varying channels using a multiple measurement SBL framework. We propose a bouquet of novel algorithms for MIMO-OFDM systems that generalize the algorithms proposed in the context of SISO-OFDM systems. The efficacy of the proposed techniques are demonstrated in terms of MSE and coded bit error rate performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

„Bayesian Framework for Sparse Vector Recovery and Parameter Bounds with Application to Compressive Sensing“. Master's thesis, 2019. http://hdl.handle.net/2286/R.I.55639.

Der volle Inhalt der Quelle
Annotation:
abstract: Signal compressed using classical compression methods can be acquired using brute force (i.e. searching for non-zero entries in component-wise). However, sparse solutions require combinatorial searches of high computations. In this thesis, instead, two Bayesian approaches are considered to recover a sparse vector from underdetermined noisy measurements. The first is constructed using a Bernoulli-Gaussian (BG) prior distribution and is assumed to be the true generative model. The second is constructed using a Gamma-Normal (GN) prior distribution and is, therefore, a different (i.e. misspecified) model. To estimate the posterior distribution for the correctly specified scenario, an algorithm based on generalized approximated message passing (GAMP) is constructed, while an algorithm based on sparse Bayesian learning (SBL) is used for the misspecified scenario. Recovering sparse signal using Bayesian framework is one class of algorithms to solve the sparse problem. All classes of algorithms aim to get around the high computations associated with the combinatorial searches. Compressive sensing (CS) is a widely-used terminology attributed to optimize the sparse problem and its applications. Applications such as magnetic resonance imaging (MRI), image acquisition in radar imaging, and facial recognition. In CS literature, the target vector can be recovered either by optimizing an objective function using point estimation, or recovering a distribution of the sparse vector using Bayesian estimation. Although Bayesian framework provides an extra degree of freedom to assume a distribution that is directly applicable to the problem of interest, it is hard to find a theoretical guarantee of convergence. This limitation has shifted some of researches to use a non-Bayesian framework. This thesis tries to close this gab by proposing a Bayesian framework with a suggested theoretical bound for the assumed, not necessarily correct, distribution. In the simulation study, a general lower Bayesian Cram\'er-Rao bound (BCRB) bound is extracted along with misspecified Bayesian Cram\'er-Rao bound (MBCRB) for GN model. Both bounds are validated using mean square error (MSE) performances of the aforementioned algorithms. Also, a quantification of the performance in terms of gains versus losses is introduced as one main finding of this report.
Dissertation/Thesis
Masters Thesis Computer Engineering 2019
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Srinivas, Suraj. „Learning Compact Architectures for Deep Neural Networks“. Thesis, 2017. http://etd.iisc.ernet.in/2005/3581.

Der volle Inhalt der Quelle
Annotation:
Deep neural networks with millions of parameters are at the heart of many state of the art computer vision models. However, recent works have shown that models with much smaller number of parameters can often perform just as well. A smaller model has the advantage of being faster to evaluate and easier to store - both of which are crucial for real-time and embedded applications. While prior work on compressing neural networks have looked at methods based on sparsity, quantization and factorization of neural network layers, we look at the alternate approach of pruning neurons. Training Neural Networks is often described as a kind of `black magic', as successful training requires setting the right hyper-parameter values (such as the number of neurons in a layer, depth of the network, etc ). It is often not clear what these values should be, and these decisions often end up being either ad-hoc or driven through extensive experimentation. It would be desirable to automatically set some of these hyper-parameters for the user so as to minimize trial-and-error. Combining this objective with our earlier preference for smaller models, we ask the following question - for a given task, is it possible to come up with small neural network architectures automatically? In this thesis, we propose methods to achieve the same. The work is divided into four parts. First, given a neural network, we look at the problem of identifying important and unimportant neurons. We look at this problem in a data-free setting, i.e; assuming that the data the neural network was trained on, is not available. We propose two rules for identifying wasteful neurons and show that these suffice in such a data-free setting. By removing neurons based on these rules, we are able to reduce model size without significantly affecting accuracy. Second, we propose an automated learning procedure to remove neurons during the process of training. We call this procedure ‘Architecture-Learning’, as this automatically discovers the optimal width and depth of neural networks. We empirically show that this procedure is preferable to trial-and-error based Bayesian Optimization procedures for selecting neural network architectures. Third, we connect ‘Architecture-Learning’ to a popular regularize called ‘Dropout’, and propose a novel regularized which we call ‘Generalized Dropout’. From a Bayesian viewpoint, this method corresponds to a hierarchical extension of the Dropout algorithm. Empirically, we observe that Generalized Dropout corresponds to a more flexible version of Dropout, and works in scenarios where Dropout fails. Finally, we apply our procedure for removing neurons to the problem of removing weights in a neural network, and achieve state-of-the-art results in scarifying neural networks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie