Dissertationen zum Thema „Sparse Bayesian learning (SBL)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-17 Dissertationen für die Forschung zum Thema "Sparse Bayesian learning (SBL)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Chen, Cong. „High-Dimensional Generative Models for 3D Perception“. Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103948.
Der volle Inhalt der QuelleDoctor of Philosophy
The development of automation systems and robotics brought the modern world unrivaled affluence and convenience. However, the current automated tasks are mainly simple repetitive motions. Tasks that require more artificial capability with advanced visual cognition are still an unsolved problem for automation. Many of the high-level cognition-based tasks require the accurate visual perception of the environment and dynamic objects from the data received from the optical sensor. The capability to represent, identify and interpret complex visual data for understanding the geometric structure of the world is 3D perception. To better tackle the existing 3D perception challenges, this dissertation proposed a set of generative learning-based frameworks on sparse tensor data for various high-dimensional robotics perception applications: underwater point cloud filtering, image restoration, deformation detection, and localization. Underwater point cloud data is relevant for many applications such as environmental monitoring or geological exploration. The data collected with sonar sensors are however subjected to different types of noise, including holes, noise measurements, and outliers. In the first chapter, we propose a generative model for point cloud data recovery using Variational Bayesian (VB) based sparse tensor factorization methods to tackle these three defects simultaneously. In the second part of the dissertation, we propose an image restoration technique to tackle missing data, which is essential for many perception applications. An efficient generative chaotic RNN framework has been introduced for recovering the sparse tensor from a single corrupted image for various types of missing data. In the last chapter, a multi-level CNN for high-dimension tensor feature extraction for underwater vehicle localization has been proposed.
Higson, Edward John. „Bayesian methods and machine learning in astrophysics“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289728.
Der volle Inhalt der QuelleJin, Junyang. „Novel methods for biological network inference : an application to circadian Ca2+ signaling network“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285323.
Der volle Inhalt der QuelleSubramanian, Harshavardhan. „Combining scientific computing and machine learning techniques to model longitudinal outcomes in clinical trials“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176427.
Der volle Inhalt der QuelleFrancisco, André Biasin Segalla. „Esparsidade estruturada em reconstrução de fontes de EEG“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-13052018-112615/.
Der volle Inhalt der QuelleFunctional Neuroimaging is an area of neuroscience which aims at developing several techniques to map the activity of the nervous system and has been under constant development in the last decades due to its high importance in clinical applications and research. Common applied techniques such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have great spatial resolution (~ mm), but a limited temporal resolution (~ s), which poses a great challenge on our understanding of the dynamics of higher cognitive functions, whose oscillations can occur in much finer temporal scales (~ ms). Such limitation occurs because these techniques rely on measurements of slow biological responses which are correlated in a complicated manner to the actual electric activity. The two major candidates that overcome this shortcoming are Electro- and Magnetoencephalography (EEG/MEG), which are non-invasive techniques that measure the electric and magnetic fields on the scalp, respectively, generated by the electrical brain sources. Both have millisecond temporal resolution, but typically low spatial resolution (~ cm) due to the highly ill-posed nature of the electromagnetic inverse problem. There has been a huge effort in the last decades to improve their spatial resolution by means of incorporating relevant information to the problem from either other imaging modalities and/or biologically inspired constraints allied with the development of sophisticated mathematical methods and algorithms. In this work we focus on EEG, although all techniques here presented can be equally applied to MEG because of their identical mathematical form. In particular, we explore sparsity as a useful mathematical constraint in a Bayesian framework called Sparse Bayesian Learning (SBL), which enables the achievement of meaningful unique solutions in the source reconstruction problem. Moreover, we investigate how to incorporate different structures as degrees of freedom into this framework, which is an application of structured sparsity and show that it is a promising way to improve the source reconstruction accuracy of electromagnetic imaging methods.
Cherief-Abdellatif, Badr-Eddine. „Contributions to the theoretical study of variational inference and robustness“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAG001.
Der volle Inhalt der QuelleThis PhD thesis deals with variational inference and robustness. More precisely, it focuses on the statistical properties of variational approximations and the design of efficient algorithms for computing them in an online fashion, and investigates Maximum Mean Discrepancy based estimators as learning rules that are robust to model misspecification.In recent years, variational inference has been extensively studied from the computational viewpoint, but only little attention has been put in the literature towards theoretical properties of variational approximations until very recently. In this thesis, we investigate the consistency of variational approximations in various statistical models and the conditions that ensure the consistency of variational approximations. In particular, we tackle the special case of mixture models and deep neural networks. We also justify in theory the use of the ELBO maximization strategy, a model selection criterion that is widely used in the Variational Bayes community and is known to work well in practice.Moreover, Bayesian inference provides an attractive online-learning framework to analyze sequential data, and offers generalization guarantees which hold even under model mismatch and with adversaries. Unfortunately, exact Bayesian inference is rarely feasible in practice and approximation methods are usually employed, but do such methods preserve the generalization properties of Bayesian inference? In this thesis, we show that this is indeed the case for some variational inference algorithms. We propose new online, tempered variational algorithms and derive their generalization bounds. Our theoretical result relies on the convexity of the variational objective, but we argue that our result should hold more generally and present empirical evidence in support of this. Our work presents theoretical justifications in favor of online algorithms that rely on approximate Bayesian methods. Another point that is addressed in this thesis is the design of a universal estimation procedure. This question is of major interest, in particular because it leads to robust estimators, a very hot topic in statistics and machine learning. We tackle the problem of universal estimation using a minimum distance estimator based on the Maximum Mean Discrepancy. We show that the estimator is robust to both dependence and to the presence of outliers in the dataset. We also highlight the connections that may exist with minimum distance estimators using L2-distance. Finally, we provide a theoretical study of the stochastic gradient descent algorithm used to compute the estimator, and we support our findings with numerical simulations. We also propose a Bayesian version of our estimator, that we study from both a theoretical and a computational points of view
Le, Folgoc Loïc. „Apprentissage statistique pour la personnalisation de modèles cardiaques à partir de données d’imagerie“. Thesis, Nice, 2015. http://www.theses.fr/2015NICE4098/document.
Der volle Inhalt der QuelleThis thesis focuses on the calibration of an electromechanical model of the heart from patient-specific, image-based data; and on the related task of extracting the cardiac motion from 4D images. Long-term perspectives for personalized computer simulation of the cardiac function include aid to the diagnosis, aid to the planning of therapy and prevention of risks. To this end, we explore tools and possibilities offered by statistical learning. To personalize cardiac mechanics, we introduce an efficient framework coupling machine learning and an original statistical representation of shape & motion based on 3D+t currents. The method relies on a reduced mapping between the space of mechanical parameters and the space of cardiac motion. The second focus of the thesis is on cardiac motion tracking, a key processing step in the calibration pipeline, with an emphasis on quantification of uncertainty. We develop a generic sparse Bayesian model of image registration with three main contributions: an extended image similarity term, the automated tuning of registration parameters and uncertainty quantification. We propose an approximate inference scheme that is tractable on 4D clinical data. Finally, we wish to evaluate the quality of uncertainty estimates returned by the approximate inference scheme. We compare the predictions of the approximate scheme with those of an inference scheme developed on the grounds of reversible jump MCMC. We provide more insight into the theoretical properties of the sparse structured Bayesian model and into the empirical behaviour of both inference schemes
Dang, Hong-Phuong. „Approches bayésiennes non paramétriques et apprentissage de dictionnaire pour les problèmes inverses en traitement d'image“. Thesis, Ecole centrale de Lille, 2016. http://www.theses.fr/2016ECLI0019/document.
Der volle Inhalt der QuelleDictionary learning for sparse representation has been widely advocated for solving inverse problems. Optimization methods and parametric approaches towards dictionary learning have been particularly explored. These methods meet some limitations, particularly related to the choice of parameters. In general, the dictionary size is fixed in advance, and sparsity or noise level may also be needed. In this thesis, we show how to perform jointly dictionary and parameter learning, with an emphasis on image processing. We propose and study the Indian Buffet Process for Dictionary Learning (IBP-DL) method, using a bayesian nonparametric approach.A primer on bayesian nonparametrics is first presented. Dirichlet and Beta processes and their respective derivatives, the Chinese restaurant and Indian Buffet processes are described. The proposed model for dictionary learning relies on an Indian Buffet prior, which permits to learn an adaptive size dictionary. The Monte-Carlo method for inference is detailed. Noise and sparsity levels are also inferred, so that in practice no parameter tuning is required. Numerical experiments illustrate the performances of the approach in different settings: image denoising, inpainting and compressed sensing. Results are compared with state-of-the art methods is made. Matlab and C sources are available for sake of reproducibility
Gerchinovitz, Sébastien. „Prédiction de suites individuelles et cadre statistique classique : étude de quelques liens autour de la régression parcimonieuse et des techniques d'agrégation“. Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00653550.
Der volle Inhalt der QuelleShi, Minghui. „Bayesian Sparse Learning for High Dimensional Data“. Diss., 2011. http://hdl.handle.net/10161/3869.
Der volle Inhalt der QuelleIn this thesis, we develop some Bayesian sparse learning methods for high dimensional data analysis. There are two important topics that are related to the idea of sparse learning -- variable selection and factor analysis. We start with Bayesian variable selection problem in regression models. One challenge in Bayesian variable selection is to search the huge model space adequately, while identifying high posterior probability regions. In the past decades, the main focus has been on the use of Markov chain Monte Carlo (MCMC) algorithms for these purposes. In the first part of this thesis, instead of using MCMC, we propose a new computational approach based on sequential Monte Carlo (SMC), which we refer to as particle stochastic search (PSS). We illustrate PSS through applications to linear regression and probit models.
Besides the Bayesian stochastic search algorithms, there is a rich literature on shrinkage and variable selection methods for high dimensional regression and classification with vector-valued parameters, such as lasso (Tibshirani, 1996) and the relevance vector machine (Tipping, 2001). Comparing with the Bayesian stochastic search algorithms, these methods does not account for model uncertainty but are more computationally efficient. In the second part of this thesis, we generalize this type of ideas to matrix valued parameters and focus on developing efficient variable selection method for multivariate regression. We propose a Bayesian shrinkage model (BSM) and an efficient algorithm for learning the associated parameters .
In the third part of this thesis, we focus on the topic of factor analysis which has been widely used in unsupervised learnings. One central problem in factor analysis is related to the determination of the number of latent factors. We propose some Bayesian model selection criteria for selecting the number of latent factors based on a graphical factor model. As it is illustrated in Chapter 4, our proposed method achieves good performance in correctly selecting the number of factors in several different settings. As for application, we implement the graphical factor model for several different purposes, such as covariance matrix estimation, latent factor regression and classification.
Dissertation
Huang, Din-Hwa, und 黃汀華. „Basis Adaptive Sparse Bayesian Learning : Algorithms and Applications“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/6n47p5.
Der volle Inhalt der Quelle國立交通大學
電信工程研究所
103
Sparse Bayesian learning (SBL) is a widely used compressive sensing (CS) method that finds the solution by Bayesian inference. In this approach, a basis function is specified to form the transform matrix. For a particular application, it may exist a proper basis, with known model function and unknown parameters, which can convert the signal to a sparse domain. In conventional SBL, the parameters of the basis are assumed to be known as priori. This assumption may not be valid in real-world applications, and the efficacy of conventional SBL approaches can be greatly affected. In this dissertation, we propose a basis-adaptive-sparse-Bayesian-learning (BA-SBL) framework, which can estimate the basis and system parameters, alternatively and iteratively, to solve the problem. Possible applications are also explored. We start the work with the cooperative spectrum sensing problem in cognitive radio (CR) systems. It is known that in addition to spectrum sparsity, spatial sparsity can also be used to further enhance spectral utilization. To achieve that, secondary users (SUs) must know the locations and signal-strength distributions of primary-users’ base-stations (PUBSs), which is referred to as radio source positioning and power-propagation-map (PPM) reconstruction. Conventional approaches approximate PUBSs’ power decay with a path-loss model (PLM) and assume PUBSs’ locations on some grid points. However, the parameters of the PLM have to be known in advance and the estimation accuracy is bounded by the resolution of the grid points. We first employ a Laplacian function to model the PUBS power decay profile and propose a BA-SBL scheme to estimate corresponding parameters. With the proposed method, little priori information is required. To further enhance the performance, we incorporate source number detection methods such that the number of the PUBSs can be precisely detected. Simulations show that the proposed algorithm has satisfactory performance even when the spatial measurement rate is low. While the proposed BA-SBL scheme can effectively reconstruct the PPM in CR systems, it can only be applied in one frequency band at a time, and the frequency-band dependence is not considered. To fill the gap, we then extend the Laplacian function to the multiple-band scenario. For a multi-band Laplacian function, its correlation between different bands is taken into consideration by a block SBL (BSBL) method. The BA-SBL is then modified and extended to a basis-adaptive BSBL (BA-BSBL) scheme, simultaneously reconstructing the PPMs of multiple frequency bands. Simulations show that BA-BSBL outperforms BA-SBL applied to each band, independently. Finally, we apply the proposed BA-BSBL procedure to the positioning problem in the 3rdgeneration-partnership-project (3GPP) long-term-evolution (LTE) systems. The observed-timedifference-of-arrival (OTDOA) method is used to estimate the location of user-element (UE). It uses the estimated time-of-arrivals (TOAs) from three different base stations (BSs) as the observations. The TOA corresponding to a BS can be obtained by the first-tap delay of the time-domain channel response. The main problem of conventional OTDOA methods is that the precision of TOA estimation, obtained by a channel estimation method, is limited by the quantization effect of the receiver’s sampler. Since wireless channels are generally spare, we can then formulate the time-domain channel estimation as a CS problem. Using the pulseshaping-filter response as the basis, we apply the proposed BA-BSBL procedure to conduct the channel estimation, and the TOA can be estimated without quantization. Simulations show that the proposed BA-BSBL algorithm can significantly enhance the precision of TOA estimation and then improve the positioning performance.
Huang, Wen-Han, und 黃玟翰. „Three-dimensional probabilistic site characterization by sparse Bayesian learning“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/6u62y3.
Der volle Inhalt der Quelle國立臺灣大學
土木工程學研究所
107
This study investigated the modified cone tip resistance (qt) data from cone penetration tests (CPT). The feasibility and method of identifying the trend function were also discussed. The vertical spatial distribution is expressed as a depth-dependent trend function and a zero-mean spatial variation. Trend function can help us catch soil properties in space. Spatial variation can be estimated by standard deviation (σ) and scale of fluctuation (δ). In addition to the vertical scale of fluctuation, in 3D case, horizontal scale of fluctuation is also important. However, the number of horizontal data is much less than that of the vertical data. Horizontal scale of fluctuation is hard to be estimated. The estimation of the horizontal parameter is difficult. Another problem is that when analyzing multiple data at a time, the matrix becomes very huge, increasing the computation and even exceeding the load of the memory. We use Cholesky decomposition and Kronecker product to simplify the matrix. In this way, we can greatly reduce the computation. This study uses a two-step Bayesian analysis to identify trend functions. The first step is to select the basis functions we need by sparse Bayesian learning. In this study, we also consider the effects of different kinds of basis functions. The second step is to use transitional Markov chain Monte Carlo (TMCMC; Ching and Chen, 2007) as a method for estimating the parameters of the random field. Through the above two steps, we can fit the trend function and model the random field.
Huang, Han-Shen, und 黃漢申. „Learning from Sparse Data: An Approach to Parameter Learning in Bayesian Networks“. Thesis, 2003. http://ndltd.ncl.edu.tw/handle/18831073237145141413.
Der volle Inhalt der Quelle國立臺灣大學
資訊工程學研究所
91
Many newly-emerging applications with small and incomplete (sparse for abbreviation) data sets present new challenges to machine learning. For example, we would like to have a model that can accurately predict the possibility of domestic terrorist incidents and attack terrorism in advance. Such incidents are rare, but always bring severe impact once they really happen. In addition, the relevant symptoms may be unknown, unobserved, and different case by case. Therefore, learning accurate models from this kind of sparse data is difficult, but very meaningful and important. One way to deal with such situations is to learn probabilistic models from sparse data sets. Probability theory is well-founded for domains with uncertainty and for data sets with missing values. We use the Bayesian network as the modeling tool because of its clear semantics for human experts. The network structure can be determined by the domain experts, showing the causal relations between features. Then, the parameters can be learned from data sets, which is more tedious for human experts. This thesis proposes a search-based approach to the parameter learning problem in Bayesian networks from sparse training sets. A search-based solution consists of the metric and the search algorithm. The most frequently used solution is to search on the data likelihood metric based on Maximum-Likelihood estimation (ML) with the Expectation-Maximization (EM) algorithm or the gradient ascent algorithm. However, our analysis shows that the ML learning for sparse data tends to over/underestimate the probabilities for low/high-frequency states of multinomial random variables. Therefore, we propose Entropic Rectification Function (ERF) to rectify the deviation without prior information about the application domain. The general EM-based framework for penalized data likelihood function, Penalized EM (PEM) algorithm, can search on ERF, but time-consuming numerical methods are required in the M-step. To accelerate the computation, we propose Fixed-Point PEM (FPEM) algorithm, in which there is a closed-form solution for the M-step based on the framework of the fixed-point iteration method. We show that ERF outperforms the data likelihood metric by leading the search algorithms to stop at the estimates with smaller KL divergences to the true distribution, and FPEM outperforms PEM by searching out local maxima faster. In addition, ERF can also be used to learn other probabilistic models with multinomial distributions, like Hidden Markov model. FPEM can search on other penalized data likelihood metrics as well.
Kuen-FengLee und 李昆峯. „Construction of Document Model and Language Model Using Bayesian Sparse Learning“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/57056195766494950616.
Der volle Inhalt der QuellePrasad, Ranjitha. „Sparse Bayesian Learning For Joint Channel Estimation Data Detection In OFDM Systems“. Thesis, 2015. http://etd.iisc.ernet.in/2005/3997.
Der volle Inhalt der Quelle„Bayesian Framework for Sparse Vector Recovery and Parameter Bounds with Application to Compressive Sensing“. Master's thesis, 2019. http://hdl.handle.net/2286/R.I.55639.
Der volle Inhalt der QuelleDissertation/Thesis
Masters Thesis Computer Engineering 2019
Srinivas, Suraj. „Learning Compact Architectures for Deep Neural Networks“. Thesis, 2017. http://etd.iisc.ernet.in/2005/3581.
Der volle Inhalt der Quelle