Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sparse Accelerator“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sparse Accelerator" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sparse Accelerator"
Xie, Xiaoru, Mingyu Zhu, Siyuan Lu und Zhongfeng Wang. „Efficient Layer-Wise N:M Sparse CNN Accelerator with Flexible SPEC: Sparse Processing Element Clusters“. Micromachines 14, Nr. 3 (24.02.2023): 528. http://dx.doi.org/10.3390/mi14030528.
Der volle Inhalt der QuelleLi, Yihang. „Sparse-Aware Deep Learning Accelerator“. Highlights in Science, Engineering and Technology 39 (01.04.2023): 305–10. http://dx.doi.org/10.54097/hset.v39i.6544.
Der volle Inhalt der QuelleXu, Jia, Han Pu und Dong Wang. „Sparse Convolution FPGA Accelerator Based on Multi-Bank Hash Selection“. Micromachines 16, Nr. 1 (27.12.2024): 22. https://doi.org/10.3390/mi16010022.
Der volle Inhalt der QuelleZheng, Yong, Haigang Yang, Yiping Jia und Zhihong Huang. „PermLSTM: A High Energy-Efficiency LSTM Accelerator Architecture“. Electronics 10, Nr. 8 (08.04.2021): 882. http://dx.doi.org/10.3390/electronics10080882.
Der volle Inhalt der QuelleYavits, Leonid, und Ran Ginosar. „Accelerator for Sparse Machine Learning“. IEEE Computer Architecture Letters 17, Nr. 1 (01.01.2018): 21–24. http://dx.doi.org/10.1109/lca.2017.2714667.
Der volle Inhalt der QuelleTeodorovic, Predrag, und Rastislav Struharik. „Hardware Acceleration of Sparse Oblique Decision Trees for Edge Computing“. Elektronika ir Elektrotechnika 25, Nr. 5 (06.10.2019): 18–24. http://dx.doi.org/10.5755/j01.eie.25.5.24351.
Der volle Inhalt der QuelleVranjkovic, Vuk, Predrag Teodorovic und Rastislav Struharik. „Universal Reconfigurable Hardware Accelerator for Sparse Machine Learning Predictive Models“. Electronics 11, Nr. 8 (08.04.2022): 1178. http://dx.doi.org/10.3390/electronics11081178.
Der volle Inhalt der QuelleGowda, Kavitha Malali Vishveshwarappa, Sowmya Madhavan, Stefano Rinaldi, Parameshachari Bidare Divakarachari und Anitha Atmakur. „FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization“. Electronics 11, Nr. 10 (22.05.2022): 1653. http://dx.doi.org/10.3390/electronics11101653.
Der volle Inhalt der QuelleDey, Sumon, Lee Baker, Joshua Schabel, Weifu Li und Paul D. Franzon. „A Scalable Cluster-based Hierarchical Hardware Accelerator for a Cortically Inspired Algorithm“. ACM Journal on Emerging Technologies in Computing Systems 17, Nr. 4 (30.06.2021): 1–29. http://dx.doi.org/10.1145/3447777.
Der volle Inhalt der QuelleLiu, Sheng, Yasong Cao und Shuwei Sun. „Mapping and Optimization Method of SpMV on Multi-DSP Accelerator“. Electronics 11, Nr. 22 (11.11.2022): 3699. http://dx.doi.org/10.3390/electronics11223699.
Der volle Inhalt der QuelleDissertationen zum Thema "Sparse Accelerator"
Syed, Akber. „A Hardware Interpreter for Sparse Matrix LU Factorization“. University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1024934521.
Der volle Inhalt der QuelleJamal, Aygul. „A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS269/document.
Der volle Inhalt der QuelleIn this PhD thesis, we address three challenges faced by linear algebra solvers in the perspective of future exascale systems: accelerating convergence using innovative techniques at the algorithm level, taking advantage of GPU (Graphics Processing Units) accelerators to enhance the performance of computations on hybrid CPU/GPU systems, evaluating the impact of errors in the context of an increasing level of parallelism in supercomputers. We are interested in studying methods that enable us to accelerate convergence and execution time of iterative solvers for large sparse linear systems. The solver specifically considered in this work is the parallel Algebraic Recursive Multilevel Solver (pARMS), which is a distributed-memory parallel solver based on Krylov subspace methods.First we integrate a randomization technique referred to as Random Butterfly Transformations (RBT) that has been successfully applied to remove the cost of pivoting in the solution of dense linear systems. Our objective is to apply this method in the ARMS preconditioner to solve more efficiently the last Schur complement system in the application of the recursive multilevel process in pARMS. The experimental results show an improvement of the convergence and the accuracy. Due to memory concerns for some test problems, we also propose to use a sparse variant of RBT followed by a sparse direct solver (SuperLU), resulting in an improvement of the execution time.Then we explain how a non intrusive approach can be applied to implement GPU computing into the pARMS solver, more especially for the local preconditioning phase that represents a significant part of the time to compute the solution. We compare the CPU-only and hybrid CPU/GPU variant of the solver on several test problems coming from physical applications. The performance results of the hybrid CPU/GPU solver using the ARMS preconditioning combined with RBT, or the ILU(0) preconditioning, show a performance gain of up to 30% on the test problems considered in our experiments.Finally we study the effect of soft fault errors on the convergence of the commonly used flexible GMRES (FGMRES) algorithm which is also used to solve the preconditioned system in pARMS. The test problem in our experiments is an elliptical PDE problem on a regular grid. We consider two types of preconditioners: an incomplete LU factorization with dual threshold (ILUT), and the ARMS preconditioner combined with RBT randomization. We consider two soft fault error modeling approaches where we perturb the matrix-vector multiplication and the application of the preconditioner, and we compare their potential impact on the convergence of the solver
Pradels, Léo. „Efficient CNN inference acceleration on FPGAs : a pattern pruning-driven approach“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS087.
Der volle Inhalt der QuelleCNN-based deep learning models provide state-of-the-art performance in image and video processing tasks, particularly for image enhancement or classification. However, these models are computationally and memory-intensive, making them unsuitable for real-time constraints on embedded FPGA systems. As a result, compressing these CNNs and designing accelerator architectures for inference that integrate compression in a hardware-software co-design approach is essential. While software optimizations like pruning have been proposed, they often lack the structured approach needed for effective accelerator integration. To address these limitations, this thesis focuses on accelerating CNNs on FPGAs while complying with real-time constraints on embedded systems. This is achieved through several key contributions. First, it introduces pattern pruning, which imposes structure on network sparsity, enabling efficient hardware acceleration with minimal accuracy loss due to compression. Second, a scalable accelerator for CNN inference is presented, which adapts its architecture based on input performance criteria, FPGA specifications, and target CNN model architecture. An efficient method for integrating pattern pruning within the accelerator and a complete flow for CNN acceleration are proposed. Finally, improvements in network compression are explored through Shift&Add quantization, which modifies FPGA computation methods while maintaining baseline network accuracy
Ramachandran, Shridhar. „Incremental PageRank acceleration using Sparse Matrix-Sparse Vector Multiplication“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462894358.
Der volle Inhalt der QuelleFernández, Becerra David. „Multicore acceleration of sparse electromagnetics computations“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104641.
Der volle Inhalt der QuelleLes processeurs multicœurs sont devenus la tendance dominante de l'industrie pour accroître la performance des systèmes informatiques, forçant les concepteurs de systèmes électromagnétiques (EM) à reconcevoir leurs applications en utilisant des paradigmes de programmation parallèle. Cela est particulièrement vrai pour les calculs impliquant des structures de données complexes comme les calculs de matrices creuses qui surviennent souvent dans des simulations électromagnétiques (EM) avec la méthode d'analyse par éléments finis (FÉM). Ces calculs nécessitent de manipulation de pointeurs qui rendent inutiles de nombreuses optimisations du compilateur et les bibliothèques de mémoire partagée parallèle (OpenMP, par exemple). Ce travail présente de nouvelles structures de données rares et de nouvelles techniques afin d'exploiter efficacement le parallélisme multicœur et les unités de vecteur court (dont le dernier n'a pas été exploité par des bibliothèques de matrices creuses à la fine pointe de la technologie) pour les noyaux de calcul intensif récurrents dans les simulations EM, tels que les multiplications matrice-vecteur rares (SMVM) et des algorithmes à gradient conjugué (CG). Des performances d'accélérations jusqu'à 14 fois supérieures sont démontrées pour le noyau accéléré par SMVM et jusqu'à 5,8 fois supérieures pour le noyau CG en utilisant les méthodes proposées par rapport aux approches conventionnelles pour deux architectures multicœurs différentes. Enfin, une nouvelle méthode pour résoudre la FÉM pour le traitement parallèle est présentée et une implantation optimisée est réalisée sur deux générations d'accélérateurs de GPU NVIDIA (multicœur) avec des augmentations de performances allant jusqu'à 27,53 fois par rapport aux résultats du CPU optimisé par compilateur.
Grigoras, Paul. „Instance directed tuning for sparse matrix kernels on reconfigurable accelerators“. Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/62634.
Der volle Inhalt der QuelleSegura, Salvador Albert. „High-performance and energy-efficient irregular graph processing on GPU architectures“. Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671449.
Der volle Inhalt der QuelleEl processament de grafs és un domini prominent i establert com a la base de noves aplicacions emergents en àrees com l'anàlisi de dades i Machine Learning, que permeten aplicacions com ara navegació per carretera, xarxes socials i reconeixement automàtic de veu. La gran quantitat de dades emprades en aquests dominis requereix d’arquitectures d’alt rendiment, com ara GPGPU. Tot i que el processament de grans càrregues de treball basades en grafs presenta un alt grau de paral·lelisme, els patrons d’accés a la memòria tendeixen a ser irregulars, fet que redueix l’eficiència a causa de la divergència d’accessos a memòria. Per tal de millorar aquests problemes, les aplicacions de grafs per a GPGPU realitzen operacions de stream compaction que processen nodes/arestes per tal que els passos posteriors funcionin en un conjunt de dades compactat. Proposem deslliurar d’aquesta tasca a la extensió hardware Stream Compaction Unit (SCU) adaptada als requisits d’aquestes operacions, que a més realitza un pre-processament filtrant i reordenant els elements processats.Mostrem que les ineficiències de divergència de memòria prevalen en aplicacions GPGPU basades en grafs irregulars, tot i que trobem que és possible relaxar la relació estricta entre threads i les dades processades per obtenir noves optimitzacions. Com a tal, proposem la Irregular accesses Reorder Unit (IRU), una nova extensió de maquinari integrada al pipeline de la GPU que reordena i filtra les dades processades pels threads en accessos irregulars que milloren la convergència d’accessos a memòria. Finalment, aprofitem els punts forts de les propostes anteriors per aconseguir millores sinèrgiques. Ho fem proposant la IRU-enhanced SCU (ISCU), que utilitza els mecanismes de pre-processament eficients de la IRU per millorar l’eficiència de stream compaction de la SCU i les limitacions de rendiment de NoC a causa de les operacions de pre-processament de la SCU.
Yee, Wai Min. „Cache Design for a Hardware Accelerated Sparse Texture Storage System“. Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1197.
Der volle Inhalt der QuelleMantell, Rosemary Genevieve. „Accelerated sampling of energy landscapes“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267990.
Der volle Inhalt der QuelleChen, Dong. „Acceleration of the spatial selective excitation of MRI via sparse approximation“. kostenfrei, 2009. https://mediatum2.ub.tum.de/node?id=956913.
Der volle Inhalt der QuelleBücher zum Thema "Sparse Accelerator"
United States. National Aeronautics and Space Administration., Hrsg. Arc-driven rail accelerator research: Final report. Tuskegee, Ala: Mechanical Engineering Dept., Tuskegee University, 1989.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Arc-driven rail accelerator research: Final report. Tuskegee, Ala: Mechanical Engineering Dept., Tuskegee University, 1989.
Den vollen Inhalt der Quelle findenZana, Lynnette M. Rail accelerators for space transportation: An experimental investigation. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Space Experiments with Particle Accelerators (SEPAC): Final report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenBauer, Dominique, und Camilla Murgia, Hrsg. Ephemeral Spectacles, Exhibition Spaces and Museums. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463720908.
Der volle Inhalt der QuelleBlanchard, Robert C. Preliminary OARE absolute acceleration measurements on STS-50. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Den vollen Inhalt der Quelle findenBlanchard, Robert C. Preliminary OARE absolute acceleration measurements on STS-50. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Den vollen Inhalt der Quelle findenT, Norfleet William, und Lyndon B. Johnson Space Center., Hrsg. Issues on human acceleration tolerance after long-duration space flights. Houston, Texas: National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, 1992.
Den vollen Inhalt der Quelle findenDeLombard, Richard. Quick look report on acceleration measurements on Mir space station during Mir-16. Cleveland, Ohio: NASA Lewis Research Center, 1995.
Den vollen Inhalt der Quelle findenRichard, DeLombard, und United States. National Aeronautics and Space Administration., Hrsg. SAMS acceleration measurements on Mir from June to November 1995. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Sparse Accelerator"
Rabbi, Fazlay, Christopher S. Daley, Hasan Metin Aktulga und Nicholas J. Wright. „Evaluation of Directive-Based GPU Programming Models on a Block Eigensolver with Consideration of Large Sparse Matrices“. In Accelerator Programming Using Directives, 66–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49943-3_4.
Der volle Inhalt der QuelleWang, Bo, Sheng Ma, Yuan Yuan, Yi Dai, Wei Jiang, Xiang Hou, Xiao Yi und Rui Xu. „SparG: A Sparse GEMM Accelerator for Deep Learning Applications“. In Algorithms and Architectures for Parallel Processing, 529–47. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22677-9_28.
Der volle Inhalt der QuelleAnzalone, Erik, Maurizio Capra, Riccardo Peloso, Maurizio Martina und Guido Masera. „Low-Power Hardware Accelerator for Sparse Matrix Convolution in Deep Neural Network“. In Progresses in Artificial Intelligence and Neural Systems, 79–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5093-5_8.
Der volle Inhalt der QuelleMeng, Zhaoteng, Long Xiao, Xiaoyao Gao, Zhan Li, Lin Shu und Jie Hao. „BitHist: A Precision-Scalable Sparse-Awareness DNN Accelerator Based on Bit Slices Products Histogram“. In Euro-Par 2023: Parallel Processing, 289–303. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39698-4_20.
Der volle Inhalt der QuelleWang, Bo, Sheng Ma, Zhong Liu, Libo Huang, Yuan Yuan und Yi Dai. „SADD: A Novel Systolic Array Accelerator with Dynamic Dataflow for Sparse GEMM in Deep Learning“. In Lecture Notes in Computer Science, 42–53. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21395-3_4.
Der volle Inhalt der QuelleAlonso, Daniel. „Data Innovation Spaces“. In The Elements of Big Data Value, 211–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68176-0_9.
Der volle Inhalt der QuelleBordry, F., L. Bottura, A. Milanese, D. Tommasini, E. Jensen, Ph Lebrun, L. Tavian et al. „Accelerator Engineering and Technology: Accelerator Technology“. In Particle Physics Reference Library, 337–517. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_8.
Der volle Inhalt der QuelleGajurel, Aavaas, Sushil J. Louis, Rui Wu, Lee Barford und Frederick C. Harris. „GPU Acceleration of Sparse Neural Networks“. In Advances in Intelligent Systems and Computing, 323–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70416-2_41.
Der volle Inhalt der QuellePuu, Tönu. „Multiplier-Accelerator Models Revisited“. In Economics of Space and Time, 145–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60877-3_8.
Der volle Inhalt der QuelleMaeda, Hiroshi, und Daisuke Takahashi. „Parallel Sparse Matrix-Vector Multiplication Using Accelerators“. In Computational Science and Its Applications – ICCSA 2016, 3–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42108-7_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Sparse Accelerator"
Koul, Kalhan, Maxwell Strange, Jackson Melchert, Alex Carsello, Yuchen Mei, Olivia Hsu, Taeyoung Kong et al. „Onyx: A Programmable Accelerator for Sparse Tensor Algebra“. In 2024 IEEE Hot Chips 36 Symposium (HCS), 1–91. IEEE, 2024. http://dx.doi.org/10.1109/hcs61935.2024.10665150.
Der volle Inhalt der QuelleLai, Yu-Hsuan, Shanq-Jang Ruan, Ming Fang, Edwin Naroska und Jeng-Lun Shieh. „A Throughput-Optimized Accelerator for Submanifold Sparse Convolutional Networks“. In 2024 IEEE 13th Global Conference on Consumer Electronics (GCCE), 1010–11. IEEE, 2024. http://dx.doi.org/10.1109/gcce62371.2024.10760758.
Der volle Inhalt der QuelleLi, Zuohao, Yiwan Lai und Hao Zhang. „Energy Efficient FPGA-Based Accelerator for Dynamic Sparse Transformer“. In 2024 13th International Conference on Communications, Circuits and Systems (ICCCAS), 7–12. IEEE, 2024. http://dx.doi.org/10.1109/icccas62034.2024.10652850.
Der volle Inhalt der QuelleLuo, Shengbai, Bo Wang, Yihao Shi, Xueyi Zhang, Qingshan Xue und Sheng Ma. „Sparm: A Sparse Matrix Multiplication Accelerator Supporting Multiple Dataflows“. In 2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP), 122–30. IEEE, 2024. http://dx.doi.org/10.1109/asap61560.2024.00034.
Der volle Inhalt der QuelleLi, Zhengke, Wendong Mao, Siyu Zhang, Qiwei Dong und Zhongfeng Wang. „An Efficient Sparse Hardware Accelerator for Spike-Driven Transformer“. In 2024 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 250–53. IEEE, 2024. https://doi.org/10.1109/apace62360.2024.10877394.
Der volle Inhalt der QuelleMao, Yingchang, Qiang Liu und Ray C. C. Cheung. „MSCA: A Multi-Grained Sparse Convolution Accelerator for DNN Training“. In 2024 IEEE 35th International Conference on Application-specific Systems, Architectures and Processors (ASAP), 34–35. IEEE, 2024. http://dx.doi.org/10.1109/asap61560.2024.00019.
Der volle Inhalt der QuelleMa, Shenghong, Jinwei Xu, Jingfei Jiang, Yaohua Wang und Dongsheng Li. „Funnel: An Efficient Sparse Attention Accelerator with Multi-Dataflow Fusion“. In 2024 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA), 1311–18. IEEE, 2024. https://doi.org/10.1109/ispa63168.2024.00176.
Der volle Inhalt der QuelleXu, Xiangzhi, Qi Liu, Wenjin Huang, WenLu Peng und Yihua Huang. „SpGCN: An FPGA-Based Graph Convolutional Network Accelerator for Sparse Graphs“. In 2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 216. IEEE, 2024. http://dx.doi.org/10.1109/fccm60383.2024.00037.
Der volle Inhalt der QuelleAnsarmohammadi, Ali, Seyed Ahmad Mirsalari, Reza Hojabr, Mostafa E. Salehi Nasab und M. Hasan Najafi. „BISQ: A Bit-level Sparse Quantized Accelerator For Embedded Deep Neural Networks“. In 2024 1st International Conference on Innovative Engineering Sciences and Technological Research (ICIESTR), 1–6. IEEE, 2024. https://doi.org/10.1109/iciestr60916.2024.10798342.
Der volle Inhalt der QuelleFeldmann, Axel, Courtney Golden, Yifan Yang, Joel S. Emer und Daniel Sanchez. „Azul: An Accelerator for Sparse Iterative Solvers Leveraging Distributed On-Chip Memory“. In 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO), 643–56. IEEE, 2024. https://doi.org/10.1109/micro61859.2024.00054.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Sparse Accelerator"
Lee, L. Solving Large Sparse Linear Systems in End-to-end Accelerator Structure Simulations. Office of Scientific and Technical Information (OSTI), Januar 2004. http://dx.doi.org/10.2172/826910.
Der volle Inhalt der QuelleGene Golub und Kwok Ko. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling. Office of Scientific and Technical Information (OSTI), März 2009. http://dx.doi.org/10.2172/950471.
Der volle Inhalt der QuelleAndrzejewski, D. Accelerated Gibbs Sampling for Infinite Sparse Factor Analysis. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1026471.
Der volle Inhalt der QuelleGarg, Raveesh, Eric Qin, Francisco Martinez, Robert Guirado, Akshay Jain, Sergi Abadal, Jose Abellan et al. Understanding the Design Space of Sparse/Dense Multiphase Dataflows for Mapping Graph Neural Networks on Spatial Accelerators. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821960.
Der volle Inhalt der QuelleKarl, Smith. Space Accelerator Engineering at Los Alamos. Office of Scientific and Technical Information (OSTI), Juni 2024. http://dx.doi.org/10.2172/2377320.
Der volle Inhalt der QuelleOttinger, M. B., T. Tajima und K. Hiramoto. Space charge tracking code for a synchrotron accelerator. Office of Scientific and Technical Information (OSTI), Juni 1997. http://dx.doi.org/10.2172/491621.
Der volle Inhalt der QuelleNguyen, Dinh Cong, und John W. Lewellen. High-Power Electron Accelerators for Space (and other) Applications. Office of Scientific and Technical Information (OSTI), Mai 2016. http://dx.doi.org/10.2172/1291275.
Der volle Inhalt der QuelleKishek, Rami, Santiago Bernal, Timothy Koeth und Irving Haber. Physics of Space Charge for Advanced Accelerators - Closeout Report. Office of Scientific and Technical Information (OSTI), Juni 2015. http://dx.doi.org/10.2172/1186737.
Der volle Inhalt der QuelleOkonechnikov, Konstantin, James Amundson und Alexandru Macridin. Transverse space charge effect calculation in the Synergia accelerator modeling toolkit. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/968693.
Der volle Inhalt der QuelleBarnard, J. J., und S. M. Lund. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge. Office of Scientific and Technical Information (OSTI), Mai 2008. http://dx.doi.org/10.2172/941431.
Der volle Inhalt der Quelle