Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Space charge doping“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Space charge doping" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Space charge doping"
Liu, Peng, Xi Pang, Zongliang Xie, Tianlei Xu, Shifeng Shi, Peng Wu, He Li und Zongren Peng. „Space charge characteristics in epoxy/nano-MgO composites: Experiment and two-dimensional model simulation“. Journal of Applied Physics 132, Nr. 16 (28.10.2022): 165501. http://dx.doi.org/10.1063/5.0104268.
Der volle Inhalt der QuelleUtamuradova, Sh B., und E. M. Naurzalieva. „SIMULATION OF POTENTIAL DISTRIBUTIONS IN THE SPACE CHARGE REGION OF SEMICONDUCTOR STRUCTURES“. SEMOCONDUCTOR PHYSICS AND MICROELECTRONICS 3, Nr. 2 (30.04.2021): 41–46. http://dx.doi.org/10.37681/2181-1652-019-x-2021-2-7.
Der volle Inhalt der QuelleJin, Xin, und Hai Wang. „Space Charge Limited Current and Magnetoresistance in Si“. Advanced Materials Research 750-752 (August 2013): 952–55. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.952.
Der volle Inhalt der QuelleChen, Inan. „Theoretical analyses of space-charge doping in amorphous semiconductor superlattices. I. Doping superlattices“. Physical Review B 32, Nr. 2 (15.07.1985): 879–84. http://dx.doi.org/10.1103/physrevb.32.879.
Der volle Inhalt der QuelleChen, Inan. „Space charge doping effects in amorphous semiconductor multi-layers“. Journal of Non-Crystalline Solids 77-78 (Dezember 1985): 1093–96. http://dx.doi.org/10.1016/0022-3093(85)90848-8.
Der volle Inhalt der QuelleKabalan, Amal. „Controlling the Doping Depth in Silicon Micropillars“. Applied Sciences 10, Nr. 13 (01.07.2020): 4581. http://dx.doi.org/10.3390/app10134581.
Der volle Inhalt der QuelleVermeersch, Rémy, Gwénolé Jacopin, Bruno Daudin und Julien Pernot. „DX center formation in highly Si doped AlN nanowires revealed by trap assisted space-charge limited current“. Applied Physics Letters 120, Nr. 16 (18.04.2022): 162104. http://dx.doi.org/10.1063/5.0087789.
Der volle Inhalt der QuelleNath, Chandrani, und A. Kumar. „Doping level dependent space charge limited conduction in polyaniline nanoparticles“. Journal of Applied Physics 112, Nr. 9 (November 2012): 093704. http://dx.doi.org/10.1063/1.4763362.
Der volle Inhalt der QuelleAhmad, Ashfaq, Pawel Strak, Pawel Kempisty, Konrad Sakowski, Jacek Piechota, Yoshihiro Kangawa, Izabella Grzegory et al. „Polarization doping—Ab initio verification of the concept: Charge conservation and nonlocality“. Journal of Applied Physics 132, Nr. 6 (14.08.2022): 064301. http://dx.doi.org/10.1063/5.0098909.
Der volle Inhalt der QuellePeña-Camargo, Francisco, Jarla Thiesbrummel, Hannes Hempel, Artem Musiienko, Vincent M. Le Corre, Jonas Diekmann, Jonathan Warby et al. „Revealing the doping density in perovskite solar cells and its impact on device performance“. Applied Physics Reviews 9, Nr. 2 (Juni 2022): 021409. http://dx.doi.org/10.1063/5.0085286.
Der volle Inhalt der QuelleDissertationen zum Thema "Space charge doping"
Litzelman, Scott J. „Modification of space charge transport in nanocrystalline cerium oxide by heterogeneous doping“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46681.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 161-170).
In the search for new materials for energy conversion and storage technologies such as solid oxide fuel cells, nano-ionic materials have become increasingly relevant because unique physical and transport properties that occur on the nanoscale may potentially lead to improved device performance. Nanocrystalline cerium oxide, in particular, has been the subject of intense scrutiny, as researchers have attempted to link trends in electrical conductivity with the properties of space charge layers within the material. In this thesis, efforts designed to intentionally modify the space charge potential, and thus the space charge profiles and the macroscopic conductivity, are described.Nanocrystalline CeO2 thin films with a columnar microstructure were grown by pulsed laser deposition. A novel heterogeneous doping technique was developed in which thin NiO and Gd203 diffusion sources were deposited on the ceria surface and annealed in the temperature range of 7008000C in order to diffuse the cations into the ceria layer exclusively along grain boundaries. Time-offlight secondary ion mass spectrometry (ToF-SIMS) was utilized to measure the diffusion profiles. A single diffusion mechanism, identified as grain boundary diffusion, was observed. Using the constant source solution to the diffusion equation, grain boundary diffusion coefficients on the order of 10-15 to 10-13 cm2/s were obtained for Ni, as well as Mg diffusion emanating from the underlying substrate. Microfabricated Pt electrodes were deposited on the sample surface, and electrical measurements were made using impedance spectroscopy and two-point DC techniques. The asdeposited thin films displayed a total conductivity and activation energy consistent with reference values in the literature. After in-diffusion, the electrical conductivity decreased by one order of magnitude. Novel electron-blocking electrodes, consisting of dense yttria-stabilized zirconia and porous Pt layers were fabricated in order to deconvolute the ionic and electronic contributions to the total conductivity. In the as-deposited state, the ionic conductivity was determined to be pO2-independent, and the electronic conductivity displayed a slope of -0.30. The ionic transference number in the as-deposited state was 0.34.
(cont.) After annealing either with or without a diffusion source at temperatures of 700-8000C, both the ionic and electronic partial conductivities decreased. The ionic transferene numbers with and without a diffusion source were 0.26 and 0.76, respectively. Based on the existing framework of charge transport in polycrystalline materials, carrier profiles associated with the Mott-Schottky and Gouy-Chapman models were integrated in order to predict conductivity values based on parameters such as grain size and the space charge potential. Mott-Schottky profiles with a space charge potential of 0.44V were used to describe the behavior of the ceria thin films in the as-deposited state. It is proposed that annealing at temperatures of 700TC and above resulted in segregation of acceptor impurity ions to the grain boundary, resulting in GouyChapman conditions. The best fit to the annealed data occurred for a space charge potential of 0.35 V: a decrease of approximately 90 mV from the as-deposited state. In addition, a high-conductivity interfacial layer between the CeO2 and substrate was detected and was determined to influence samples with no surface diffusion source to a greater degree than those with NiO or Gd203.
by Scott J. Litzelman.
Ph.D.
Paradisi, Andrea. „Ultra-high carrier modulation in two dimensions through space charge doping : graphene and zinc oxide“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066297/document.
Der volle Inhalt der QuelleCarrier modulation is an important parameter in the study of the electronic phase transitions and the electronic properties of materials and at the basis for many applications in microelectronics. The tuning of charge carrier density (doping) can be achieved chemically, by adding foreign atoms to the crystal structure of the material or electrostatically, by inducing a charge accumulation like in a Field Eect Transistor device. The latter method is reversible and particularly indicated for use in two dimensional (2D) materials or ultra-thin films. Space Charge Doping is a new technique invented and developed during this thesis for the electrostatic doping of such materials deposited on a glass surface. A space charge is created at the surface by causing sodium ions contained in glass to drift under the Eect of heat and an external electric field. This space charge in turn induces a charge accumulation in the material deposited on the glass surface which can be higher than 10^14/cm^2. Detailed characterization using transport, Hall effect, Raman and AFM measurements shows that the doping is reversible, ambipolar and does not induce chemical changes. It can be applied to large areas as shown with CVD graphene. In a second phase the space charge doping method is applied to polycrystalline ultra-thin films (< 40 nm) of ZnO_(1-x). A lowering of sheet resistance over 5 orders of magnitude is obtained. Low temperature magneto-transport measurements reveal that doped electrons are confined in two dimensions. A remarkable transition between weak localization and anti-localization isobserved as a function of doping and temperature and conclusions are drawn concerning the scattering phenomena governing electronic transport under different conditions in this material
Paradisi, Andrea. „Ultra-high carrier modulation in two dimensions through space charge doping : graphene and zinc oxide“. Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066297.
Der volle Inhalt der QuelleCarrier modulation is an important parameter in the study of the electronic phase transitions and the electronic properties of materials and at the basis for many applications in microelectronics. The tuning of charge carrier density (doping) can be achieved chemically, by adding foreign atoms to the crystal structure of the material or electrostatically, by inducing a charge accumulation like in a Field Eect Transistor device. The latter method is reversible and particularly indicated for use in two dimensional (2D) materials or ultra-thin films. Space Charge Doping is a new technique invented and developed during this thesis for the electrostatic doping of such materials deposited on a glass surface. A space charge is created at the surface by causing sodium ions contained in glass to drift under the Eect of heat and an external electric field. This space charge in turn induces a charge accumulation in the material deposited on the glass surface which can be higher than 10^14/cm^2. Detailed characterization using transport, Hall effect, Raman and AFM measurements shows that the doping is reversible, ambipolar and does not induce chemical changes. It can be applied to large areas as shown with CVD graphene. In a second phase the space charge doping method is applied to polycrystalline ultra-thin films (< 40 nm) of ZnO_(1-x). A lowering of sheet resistance over 5 orders of magnitude is obtained. Low temperature magneto-transport measurements reveal that doped electrons are confined in two dimensions. A remarkable transition between weak localization and anti-localization isobserved as a function of doping and temperature and conclusions are drawn concerning the scattering phenomena governing electronic transport under different conditions in this material
Sterpetti, Edoardo. „Phase diagram and fluctuations in two dimensional space charge doped Bi2Sr2CaCu2O8+x“. Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS100.
Der volle Inhalt der QuelleThe phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, electrostatically doped ultra-thin samples can be used through Field-Effect Transistor (FET) devices. The electrostatic modulation of charge carrier density in 2D materials is an elegant and clean approach that presents many technological challenges when high temperature superconductors are concerned. In this thesis we overcome these technological obstacles by using proprietary techniques developed in our laboratory for the study of 2D materials, and we focus on the high temperature superconductor BSCCO-2212, whose phase diagram has so far never been studied via electrostatic effect. Notably we fabricate ultra-thin high quality superconducting BSCCO-2212 devices and use an original electrostatic method called space charge doping to measure transport characteristics from 330~K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 samples as a function of doping, temperature and disorder. We also identify the critical doping range where a quantum phase transition is predicted. Finally we take a closer look at the superconducting transition in the two dimensional limit. Fluctuations and extrinsic effects are accounted for using appropriate theoretical formalism and the two dimensional character of the superconducting transition of BSCCO-2212 is analysed
Wu, Wenyi. „Space Charge Doped p-n Junction : 2D Diode with Few-layer Indium Selenide“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS449.
Der volle Inhalt der QuelleThis work combines the singular properties of 2D materials with an innovative technique used for changing the electronic properties of ultra-thin films to propose a new technology for making the simplest bipolar electronic device, the diode. Firstly we identify semiconducting materials which can be fabricated in ultra-thin layers. Secondly, we use a proprietary technique called Space Charge Doping developed in our group for doping the material, either n or p. Finally, we obtain diode characteristics from the device. The manuscript begins with a review of different materials and properties. In the family of 2D materials, our choice was a III-VI layered semiconductor with a direct bandgap: InSe. We also chose a completely different kind of material, polycrystalline CdO, which is neither layered nor has a direct bandgap but is easy to fabricate in the ultra-thin film form and has high carrier mobility. After preliminary experiments, we chose InSe and fabricated devices of ultra-thin, few atomic layer InSe thin films. We chose to develop in parallel two different geometries for the p-n junction diode. We were able to obtain rectifying behavior for each geometry implying that our space charge doping approach was successful in producing microscopically, spatially differentiated doping in each device. We discuss the obtained I-V characteristics and the inherent limitations of the devices (local heating, hysteresis) and suggest improvements for future experiments and ways of obtaining more efficient and stable functioning and geometry as part of the perspectives of this thesis
Widmer, Johannes. „Charge transport and energy levels in organic semiconductors“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154918.
Der volle Inhalt der QuelleOrganische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile
Domange, Jocelyn. „Étude et exploitation de bolomètres de nouvelle génération à électrodes concentriques pour la recherche de matière noire froide non-baryonique dans l’expérience Edelweiss II“. Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112169/document.
Der volle Inhalt der QuelleEDELWEISS is a direct non-baryonic cold dark matter detection experiment in the form of weakly interacting massive particles (also known as WIMPs), which currently constitute the most popular candidates to account for the missing mass in the Universe. To this purpose, EDELWEISS uses germanium bolometers at cryogenic temperature (20 mK approximately) in the Underground Laboratory of Modane (LSM) at the French-Italian border. Since 2008, a new type of detector is operated, equipped with concentric electrodes to optimize the rejection of surface events (coplanar-grid detectors). This thesis work is divided into several research orientations. First, we carried out measurements concerning charge collection in the crystals. The velocity laws of the carriers (electrons and holes) have been determined in germanium at 20 mK in the <100> orientation, and a complete study of charge sharing has been done, including an evaluation of the transport anisotropy and of the straggling of the carriers. These results lead to a better understanding of the inner properties of the EDELWEISS detectors. Then, studies relating to the improvement of the performances were carried out. In particular, we have optimized the space-charge cancellation procedure in the crystals and improved the passive rejection of surface events (β). The fiducial volume of the detectors has been evaluated using two X-ray lines from cosmically activated radionuclides: 68Ge and 65Zn. Lastly, an exhaustive study of the low energy spectra has been carried out, which makes it possible to develop a systematic analysis method for the search of low-mass WIMPs in EDELWEISS
Widmer, Johannes. „Charge transport and energy levels in organic semiconductors“. Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28350.
Der volle Inhalt der QuelleOrganische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers
Bücher zum Thema "Space charge doping"
Symposium, C. on Photorefractive Materials :. Growth and Doping Optical and Electrical Characterizations Charge Transfer Processes and Space Charge Field Effects (1994 Strasbourg France). Photorefractive materials: Proceedings of symposium C on photorefractive materials : growth and doping, optical and electrical characterizations, charge transfer processes and space charge field effects, applications of the 1994 E-MRS spring conference, Strasbourg, France, May 24-27, 1994. Amsterdam: North Hollnad/Elsevier, 1995.
Den vollen Inhalt der Quelle findenSymposium C on Photorefractive Materials: Growth and Doping, Optical and Electrical Characterizations, Charge Transfer Process and Space Charge Field Effects, Applications (1994 Strasbourg, France). Photorefractive materials: Proceedings of Symposium C on Photorefractive Materials: Growth and Doping, Optical and Electrical Characterizations, Charge Transfer Process and Space Charge Field Effects, Applications of the 1994 E-MRS Spring Conference, Strasbourg, France, May 24-27, 1994. Amsterdam: Elsevier, 1995.
Den vollen Inhalt der Quelle findenRoosen, G., F. Agulló-López und O. F. Schirmer. Photorefractive Materials : Proceedings : Symposium C on Photorefractive Materials: Growth/Doping, Optical and Electrical Characterizations, Charge Transfer Processes/Space Charge Field Effects, Applications of 1994 e-MRS Spring Conference, Strasbourg, France, May 24-27 1994. Elsevier Science & Technology Books, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Space charge doping"
Forrest, Stephen R. „Charge transport in organic semiconductors“. In Organic Electronics, 171–292. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198529729.003.0004.
Der volle Inhalt der QuelleR. White, Nicholas. „DC Parallel Ribbon Ion Beams for High-Dose Processes“. In Ion Beam Technology and Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.111487.
Der volle Inhalt der QuelleBenisty, Henri, Jean-Jacques Greffet und Philippe Lalanne. „Semiconductors and quantum wells“. In Introduction to Nanophotonics, 199–245. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198786139.003.0008.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Space charge doping"
Choquette, Kent D., Leon McCaughan, J. E. Potts, D. K. Misemer, G. Haugen und G. D. Vernstrom. „Tunable photoluminescence of uniformly doped short-period GaAs doping superlattices“. In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ipr.1990.mb4.
Der volle Inhalt der QuelleChoquette, Kent D., und Leon Mccaughan. „Nonresonant optical nonlinearity in short-period GaAs doping superlattices“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tuy2.
Der volle Inhalt der QuelleWang, Q., W. Wang, S. Shi, C. Chen, H. Li, J. Li, Y. Wen, P. Liu und Z. Peng. „Research on space charge characteristics and electric threshold of high doping rate epoxy/micro-AL2O3 composites used for GIL basin insulators“. In 22nd International Symposium on High Voltage Engineering (ISH 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2022.0200.
Der volle Inhalt der QuelleCheville, R. A., W. B. Haynes und N. J. Halas. „Time-resolved reflectivity studies of GaAs(100)/oxide and GaAs(100)/ZnSe interfaces“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tuqq3.
Der volle Inhalt der QuelleMontemezzani, G., P. Rogin, M. Zgonik und P. Günter. „Interband Photorefractive Effects in KNbO3 crystals“. In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/pmed.1993.frf.1.
Der volle Inhalt der QuelleLiu, Yanping, Zhaoyang Chen, Yanwei Fan, Weizhen Ba und Shilie Pan. „A Novel Radiation Dosimetry Based on Optically Stimulated Luminescence“. In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48023.
Der volle Inhalt der QuellePennise, C. A., J. D. Bruno, M. S. Tobin und T. B. Simpson. „Optical Modulation of the Refractive Index in Gallium Arsenide Doping Superlattices“. In Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.mf1.
Der volle Inhalt der QuelleSchroeder, W. Andreas, Thomas S. Stark, Arthur L. Smir und George C. Valley. „Hot Carrier Enhancement of Dember Photorefractive Space-Charge Fields in Zincblende Semiconductors“. In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pmed.1991.mc5.
Der volle Inhalt der QuelleZhou, Shifeng, Yongze Yu und Jianrong Qiu. „Space-Selective Modification of Glass by Using Femtosecond Laser“. In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.8p_a410_9.
Der volle Inhalt der QuelleSrivastav, Durgesh, Nagesh Devidas Patil und Pravesh Chandra Shukla. „Numerical Investigation of a Single Cell (Li-Ion) Combined with Phase Change Material and Additives for Battery Thermal Management“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2666.
Der volle Inhalt der Quelle