Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sous-Groupes discrets des groupes de Lie“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sous-Groupes discrets des groupes de Lie" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sous-Groupes discrets des groupes de Lie"
Paulin, Frédéric. „Dégénérescence de sous-groupes discrets des groupes de Lie semi-simples“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, Nr. 11 (Juni 1997): 1217–20. http://dx.doi.org/10.1016/s0764-4442(99)80402-9.
Der volle Inhalt der QuelleSAMBARINO, A. „Hyperconvex representations and exponential growth“. Ergodic Theory and Dynamical Systems 34, Nr. 3 (25.01.2013): 986–1010. http://dx.doi.org/10.1017/etds.2012.170.
Der volle Inhalt der QuelleMacias-Virgós, E. „Sous-groupes denses des groupes de Lie nilpotents“. Illinois Journal of Mathematics 35, Nr. 4 (Dezember 1991): 607–17. http://dx.doi.org/10.1215/ijm/1255987674.
Der volle Inhalt der QuelleRobart, Thierry. „Sur L'Intégrabilité des Sous–Algèbres de lie en Dimension Infinie“. Canadian Journal of Mathematics 49, Nr. 4 (01.08.1997): 820–39. http://dx.doi.org/10.4153/cjm-1997-042-7.
Der volle Inhalt der QuelleQuint, J. F. „Cones Limites des Sous-groupes Discrets des Groupes Reductifs sur un Corps Local“. Transformation Groups 7, Nr. 3 (01.09.2002): 247–66. http://dx.doi.org/10.1007/s00031-002-0013-2.
Der volle Inhalt der QuelleQuint, J. F. „Divergence exponentielle des sous-groupes discrets en rang supérieur“. Commentarii Mathematici Helvetici 77, Nr. 3 (01.09.2002): 563–608. http://dx.doi.org/10.1007/s00014-002-8352-0.
Der volle Inhalt der QuelleChoucroun, Francis M. „Sous-groupes discrets des groupes p-adiques de rang un et arbres de Bruhat-Tits“. Israel Journal of Mathematics 93, Nr. 1 (Dezember 1996): 195–219. http://dx.doi.org/10.1007/bf02761103.
Der volle Inhalt der QuelleRoy, Damien. „Sous-groupes minimaux des groupes de Lie commutatifs réels, et applications arithmétiques“. Acta Arithmetica 56, Nr. 3 (1990): 257–69. http://dx.doi.org/10.4064/aa-56-3-257-269.
Der volle Inhalt der QuelleSaloff-Coste, L., und D. W. Stroock. „Opérateurs uniformément sous-elliptiques sur les groupes de Lie“. Journal of Functional Analysis 98, Nr. 1 (Mai 1991): 97–121. http://dx.doi.org/10.1016/0022-1236(91)90092-j.
Der volle Inhalt der QuelleGaye, Masseye. „Sous-groupes discrets de PU(2,1) engendrés par n réflexions complexes et Déformation“. Geometriae Dedicata 137, Nr. 1 (20.09.2008): 27–61. http://dx.doi.org/10.1007/s10711-008-9285-6.
Der volle Inhalt der QuelleDissertationen zum Thema "Sous-Groupes discrets des groupes de Lie"
Miquel, Sebastien. „Arithméticité de sous-groupes discrets contenant un réseau horosphérique“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS579/document.
Der volle Inhalt der QuelleLet G be a real algebraic group of real rank at least 2 and P a parabolic subgroup of G. We prove that any discrete subgroup of G that intersects the unipotent radical of P in a lattice is an arithmetic lattice of G, except maybe when G=SO(2,4n+2) and P is the stabilizer of an isotropic 2-plane. This provide a partial answer to a conjecture of Margulis that was already studied by Hee Oh. We also study the case where G is a product of several rank 1 groups, generalising results of Selberg, Benoist and Oh
Quint, Jean-François. „Sous-groupes discrets des groupes de lie semi-simples reels et p-adiques“. Paris 7, 2001. http://www.theses.fr/2001PA077142.
Der volle Inhalt der QuelleGuichard, Olivier. „Déformations de sous-groupes discrets de groupes de rang un“. Paris 7, 2004. http://www.theses.fr/2004PA077088.
Der volle Inhalt der QuelleParreau, Anne. „Dégénérescences de sous-groupes discrets de groupes de Lie semisimples et actions de groupes sur des immeubles affines“. Paris 11, 2000. http://www.theses.fr/2000PA112028.
Der volle Inhalt der QuelleFléchelles, Balthazar. „Geometric finiteness in convex projective geometry“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM029.
Der volle Inhalt der QuelleThis thesis is devoted to the study of geometrically finite convex projective orbifolds, following work of Ballas, Cooper, Crampon, Leitner, Long, Marquis and Tillmann. A convex projective orbifold is the quotient of a bounded, convex and open subset of an affine chart of real projective space (called a properly convex domain) by a discrete group of projective transformations that preserve it. We say that a convex projective orbifold is strictly convex if there are no non-trivial segments in the boundary of the convex subset, and round if in addition there is a unique supporting hyperplane at each boundary point. Following work of Cooper-Long-Tillmann and Crampon-Marquis, we say that a strictly convex orbifold is geometrically finite if its convex core decomposes as the union of a compact subset and of finitely many ends, called cusps, all of whose points have an injectivity radius smaller than a constant depending only on the dimension. Understanding what types of cusps may occur is crucial for the study of geometrically finite orbifolds. In the strictly convex case, the only known restriction on cusp holonomies, imposed by a generalization of the celebrated Margulis lemma proven by Cooper-Long-Tillmann and Crampon-Marquis, is that the holonomy of a cusp has to be virtually nilpotent. We give a complete characterization of the holonomies of cusps of strictly convex orbifolds and of those of round orbifolds. By generalizing a method of Cooper, which gave the only previously known example of a cusp of a strictly convex manifold with non virtually abelian holonomy, we build examples of cusps of strictly convex manifolds and round manifolds whose holonomy can be any finitely generated torsion-free nilpotent group. In joint work with M. Islam and F. Zhu, we also prove that for torsion-free relatively hyperbolic groups, relative P1-Anosov representations (in the sense of Kapovich-Leeb, Zhu and Zhu-Zimmer) that preserve a properly convex domain are exactly the holonomies of geometrically finite round manifolds.In the general case of non strictly convex projective orbifolds, no satisfactory definition of geometric finiteness is known at the moment. However, Cooper-Long-Tillmann, followed by Ballas-Cooper-Leitner, introduced a notion of generalized cusps in this context. Although they only require that the holonomy be virtually nilpotent, all previously known examples had virtually abelian holonomy. We build examples of generalized cusps whose holonomy can be any finitely generated torsion-free nilpotent group. We also allow ourselves to weaken Cooper-Long-Tillmann’s original definition by assuming only that the holonomy be virtually solvable, and this enables us to construct new examples whose holonomy is not virtually nilpotent.When a geometrically finite orbifold has no cusps, i.e. when its convex core is compact, we say that the orbifold is convex cocompact. Danciger-Guéritaud-Kassel provided a good definition of convex cocompactness for convex projective orbifolds that are not necessarily strictly convex. They proved that the holonomy of a convex cocompact convex projective orbifold is Gromov hyperbolic if and only if the associated representation is P1-Anosov. Using these results, Vinberg’s theory and work of Agol and Haglund-Wise about cubulated hyperbolic groups, we construct, in collaboration with S. Douba, T. Weisman and F. Zhu, examples of P1-Anosov representations for any cubulated hyperbolic group. This gives new examples of hyperbolic groups admitting Anosov representations
Battisti, Laurent. „Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets“. Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4714/document.
Der volle Inhalt der QuelleIn this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen
Guilloux, Antonin. „Equirepartition dans les espaces homogènes“. Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00372220.
Der volle Inhalt der QuelleSmilga, Ilia. „Pavages de l'espace affine“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112298/document.
Der volle Inhalt der QuelleFor every odd positive integer d, we construct a fundamental domain for the action on the 2d+1-dimensional space of certain groups of affine transformations which are free, nonabelian, act properly discontinuously and have linear part Zariski-dense in SO(d+1,d). Next for every semisimple noncompact real Lie group G, we construct a group of affine transformations of its Lie algebra g which is free, nonabelian, acts properly discontinuously and has linear part Zariski-dense in Ad G. Finally, we give some results about the local behavior of harmonic functions on the Sierpinski triangle restricted to a side of the triangle
Liu, Gang. „Restriction des séries discrètes de SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel“. Poitiers, 2011. http://nuxeo.edel.univ-poitiers.fr/nuxeo/site/esupversions/dab97901-6f8a-472a-8233-561a354976b7.
Der volle Inhalt der QuelleIn this thesis we decompose in irreducibles the restriction of a discrete series representation of SU(2,1) to a maximal exponential solvable or a Borel subgroup and we interpret our results in the framework of the orbit method, hamiltonian geometry and "Spinc" quantization. In particular, we check that admissibility, which means that the restriction decomposes discretely in irreducibles, each one appearing with finite multiplicity, is equivalent to the compacity of the reduced spaces and we show that the multiplicities are related to the quantization of the reduced spaces
Saxcé, Nicolas de. „Sous-groupes boréliens des groupes de Lie“. Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112179.
Der volle Inhalt der QuelleGiven a Lie group G, we investigate the possible Hausdorff dimensions for a measurable subgroup of G. If G is a connected nilpotent Lie group, we construct measurable subgroups of G having arbitrary Hausdorff dimension, whereas if G is compact semisimple, we show that a proper measurable subgroup of G cannot have Hausdorff dimension arbitrarily close to the dimension of G
Bücher zum Thema "Sous-Groupes discrets des groupes de Lie"
Jones, H. F. Groups, representations, and physics. Bristol, England: A. Hilger, 1990.
Den vollen Inhalt der Quelle findenJones, H. F. Groups, Representations and Physics. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenJones, H. F. Groups, Representations and Physics. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenJones, H. F. Groups, Representations and Physics. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenGroups, Representations and Physics. Taylor & Francis Group, 1998.
Den vollen Inhalt der Quelle findenGroups, representations, and physics. 2. Aufl. Bristol: Insitute of Physics Pub., 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Sous-Groupes discrets des groupes de Lie"
Serre, Jean-Pierre. „Sous-groupes Finis des Groupes de Lie“. In Springer Collected Works in Mathematics, 637–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-41978-2_42.
Der volle Inhalt der QuelleBorel, Armand. „Sous-groupes discrets de groupes p-adiques à covolume borné“. In Springer Collected Works in Mathematics, 182–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-41240-0_12.
Der volle Inhalt der QuelleDuflo, Michel, und Michèle Vergne. „Familles cohérentes sur les groupes de Lie semi-simples et restriction aux sous-groupes compacts maximaux“. In Lie Theory and Geometry, 167–215. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0261-5_6.
Der volle Inhalt der Quelle