Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sonochemical intensification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sonochemical intensification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sonochemical intensification"
Gole, Vitthal L., und Parag R. Gogate. „Intensification of sonochemical degradation of chlorobenzene using additives“. Desalination and Water Treatment 53, Nr. 10 (21.11.2013): 2623–35. http://dx.doi.org/10.1080/19443994.2013.862743.
Der volle Inhalt der QuelleChakinala, Anand G., Parag R. Gogate, Arthur E. Burgess und David H. Bremner. „Intensification of hydroxyl radical production in sonochemical reactors“. Ultrasonics Sonochemistry 14, Nr. 5 (Juli 2007): 509–14. http://dx.doi.org/10.1016/j.ultsonch.2006.09.001.
Der volle Inhalt der QuelleAshokkumar, Muthupandian. „The relevance of bubble dynamics in ultrasonic/sonochemical processes“. Journal of the Acoustical Society of America 154, Nr. 4_supplement (01.10.2023): A193. http://dx.doi.org/10.1121/10.0023238.
Der volle Inhalt der QuelleChavan, Vivek P., und Parag R. Gogate. „Intensification of Synthesis of Cumene Hydroperoxide Using Sonochemical Reactors“. Industrial & Engineering Chemistry Research 50, Nr. 22 (16.11.2011): 12433–38. http://dx.doi.org/10.1021/ie201098m.
Der volle Inhalt der QuelleChavan, Vivek P., Anand V. Patwardhan und Parag R. Gogate. „Intensification of epoxidation of soybean oil using sonochemical reactors“. Chemical Engineering and Processing: Process Intensification 54 (April 2012): 22–28. http://dx.doi.org/10.1016/j.cep.2012.01.006.
Der volle Inhalt der QuelleSivasankar, Thirugnanasambandam, und Vijayanand S. Moholkar. „Mechanistic approach to intensification of sonochemical degradation of phenol“. Chemical Engineering Journal 149, Nr. 1-3 (01.07.2009): 57–69. http://dx.doi.org/10.1016/j.cej.2008.10.004.
Der volle Inhalt der QuelleGuo, Weilin, Yahui Shi, Hongzhi Wang, Hua Yang und Guangyou Zhang. „Intensification of sonochemical degradation of antibiotics levofloxacin using carbon tetrachloride“. Ultrasonics Sonochemistry 17, Nr. 4 (April 2010): 680–84. http://dx.doi.org/10.1016/j.ultsonch.2010.01.004.
Der volle Inhalt der QuelleMoumeni, Ouarda, und Oualid Hamdaoui. „Intensification of sonochemical degradation of malachite green by bromide ions“. Ultrasonics Sonochemistry 19, Nr. 3 (Mai 2012): 404–9. http://dx.doi.org/10.1016/j.ultsonch.2011.08.008.
Der volle Inhalt der QuelleHao, Feifei, Weilin Guo, Anqi Wang, Yanqiu Leng und Helian Li. „Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant“. Ultrasonics Sonochemistry 21, Nr. 2 (März 2014): 554–58. http://dx.doi.org/10.1016/j.ultsonch.2013.09.016.
Der volle Inhalt der QuelleKhokhawala, Ismail M., und Parag R. Gogate. „Intensification of sonochemical degradation of phenol using additives at pilot scale operation“. Water Science and Technology 63, Nr. 11 (01.06.2011): 2547–52. http://dx.doi.org/10.2166/wst.2011.532.
Der volle Inhalt der QuelleDissertationen zum Thema "Sonochemical intensification"
Al-Hussaini, Louay. „Utilisation de moyens d’activation non-conventionnels pour le clivage oxydant de la lignine par le dioxygène“. Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS448.
Der volle Inhalt der QuelleDue to the depletion of fossil resources, the interest of lignin as a sustainable alternative to petroleum is growing. Thus, the main purpose of this thesis was to develop a process for oxidative cleavage of lignin by dioxygen that involves unconventional methodologies like sonochemistry and ball-milling. The catalysts used here were KEGGIN molybdovanadophosphates (PMoVx). First, the operating conditions (solvent, catalytic charge and vanadium content) were optimized to afford the cleavage of two models, 2-phenoxyacetophenone (K1HH) and 2-phenoxy-1-phenylethanol (A1HH), at atmospheric O2 pressure, into phenol, benzaldehyde and benzoic acid. For A1HH, harsher conditions were found to be necessary (O2 5 bar, 120°C). The catalysts were conventionally synthesized using a hydrothermal pathway, which consists in the H3PO4 attack of MoO3 and V2O5 in reflux water. A long heating period is often required to get moderate yields of PMoVx. Ball-milling synthesis was therefore considered. It consisted in preparing a mixed oxide by grinding MoO3 and V2O5. The latter's attack by H3PO4 was then shorter, took place at a lower temperature and resulted in higher yields of PMoVx. The activity of thus obtained PMoVx for model cleavage was similar to that of their hydrothermally synthesized counterparts. Preliminary tests on an Organosolv lignin from wheat straw under optimized conditions yielded low yields of cleavage products. Sonochemical assistance was therefore tested showing, in the case of A1HH, that a low frequency in conjunction with dioxygen bubbling was the best option
TRAN, VIET BAO KHUYEN. „QUANTIFICATION AND INTENSIFICATION OF SONOCHEMICAL EFFECTS“. Thesis, 2014. http://hdl.handle.net/2237/20307.
Der volle Inhalt der QuelleBuchteile zum Thema "Sonochemical intensification"
D. Jolhe, Prashant, Bharat A. Bhanvase, Satish P. Mardikar, Vilas S. Patil und Shirish H. Sonawane. „Sonochemical Formation of Peracetic Acid in Batch Reactor: Process Intensification and Kinetic Study“. In Sonochemical Reactions. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.89268.
Der volle Inhalt der QuelleSukhadeo Bargole, Swapnil, und Virendra Kumar Saharan. „Intensification of Biodiesel Production Process using Acoustic and Hydrodynamic Cavitation“. In Ultrasound Technology for Fuel Processing, 202–24. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049848123010013.
Der volle Inhalt der Quelle