Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SOLVENT SYSTEMS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SOLVENT SYSTEMS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SOLVENT SYSTEMS"
Raksajati, Anggit, Minh Ho und Dianne Wiley. „Solvent Development for Post-Combustion CO2 Capture: Recent Development and Opportunities“. MATEC Web of Conferences 156 (2018): 03015. http://dx.doi.org/10.1051/matecconf/201815603015.
Der volle Inhalt der QuelleGrigorescu, Gabriela, Silvia Ioan und Bogdan C. Simionescu. „Solvent/solvent/polymer ternary systems“. Polymer Bulletin 31, Nr. 1 (Juli 1993): 123–27. http://dx.doi.org/10.1007/bf00298774.
Der volle Inhalt der QuelleO'Neill, Mark L., Peeter Kruus und Robert C. Burk. „Solvatochromic parameters and solubilities in supercritical fluid systems“. Canadian Journal of Chemistry 71, Nr. 11 (01.11.1993): 1834–40. http://dx.doi.org/10.1139/v93-229.
Der volle Inhalt der QuelleShuai, Jianbo, und Xiaohui Wang. „Novel solvent systems for cellulose dissolution“. BioResources 16, Nr. 2 (01.02.2021): 2192–95. http://dx.doi.org/10.15376/biores.16.2.2192-2195.
Der volle Inhalt der QuelleTao, Fei, Bo Yu, Ping Xu und Cui Qing Ma. „Biodesulfurization in Biphasic Systems Containing Organic Solvents“. Applied and Environmental Microbiology 72, Nr. 7 (Juli 2006): 4604–9. http://dx.doi.org/10.1128/aem.00081-06.
Der volle Inhalt der QuelleNyquist, R. A., T. M. Kirchner und H. A. Fouchea. „Vibrational Frequency Shifts of the Carbonyl Stretching Mode Induced by Solvents: Acetone“. Applied Spectroscopy 43, Nr. 6 (August 1989): 1053–55. http://dx.doi.org/10.1366/0003702894203741.
Der volle Inhalt der QuelleAllard, B., E. Casadevall, A. Casadevall und C. Largeau. „Solvent-Solvent Interactions in Hexafluoroisopropanol Water Systems“. Bulletin des Sociétés Chimiques Belges 91, Nr. 5 (01.09.2010): 372. http://dx.doi.org/10.1002/bscb.19820910531.
Der volle Inhalt der QuelleLi, Xian-Zhi, Li Zhang und Keith Poole. „Role of the Multidrug Efflux Systems ofPseudomonas aeruginosa in Organic Solvent Tolerance“. Journal of Bacteriology 180, Nr. 11 (01.06.1998): 2987–91. http://dx.doi.org/10.1128/jb.180.11.2987-2991.1998.
Der volle Inhalt der QuelleCastro, Gabriela Tatiana, Mauricio Andrés Filippa, Cecilia Mariana Peralta, María Virginia Davin, María Cristina Almandoz und Estela Isabel Gasull. „Solubility and Preferential Solvation of Piroxicam in Neat Solvents and Binary Systems“. Zeitschrift für Physikalische Chemie 232, Nr. 2 (23.02.2018): 257–80. http://dx.doi.org/10.1515/zpch-2017-0946.
Der volle Inhalt der QuelleNihi, Fabio Mitugui, Hebert Samuel Carafa Fabre, Georges Garcia, Karen Barros Parron Fernandes, Flaviana Bombarda de Andrade Ferreira und Linda Wang. „In vitro assessment of solvent evaporation from commercial adhesive systems compared to experimental systems“. Brazilian Dental Journal 20, Nr. 5 (2009): 396–402. http://dx.doi.org/10.1590/s0103-64402009000500007.
Der volle Inhalt der QuelleDissertationen zum Thema "SOLVENT SYSTEMS"
Dakua, Vikas Kumar. „Physico-chemical studies on interactions between ion-solvent, ion-ion and solvent-solvent in aqueous and non-aqueous pure and mixed solvent systems“. Thesis, University of North Bengal, 2008. http://hdl.handle.net/123456789/707.
Der volle Inhalt der QuelleCheng, Chin-Hwa 1957. „Solubility of diuron in complex solvent systems“. Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277194.
Der volle Inhalt der QuelleLunkov, Sergey. „Modelling metal complexation in solvent extraction systems“. Thesis, Curtin University, 2013. http://hdl.handle.net/20.500.11937/2018.
Der volle Inhalt der QuelleBrindle, David. „Lattice models of amphiphile and solvent mixtures“. Thesis, Sheffield Hallam University, 1991. http://shura.shu.ac.uk/19397/.
Der volle Inhalt der QuelleLesutis, Heather Patrick. „Reaction kinetics in environmentally benign novel solvent systems“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/11865.
Der volle Inhalt der QuelleBailie, David S. „Homogeneous oxidation catalysis in multiphasic liquid solvent systems“. Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675950.
Der volle Inhalt der QuellePayne, Kathryn Elizabeth Ann. „Pigment-dispersant-solvent interactions appropriate to paint systems“. Thesis, London South Bank University, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267389.
Der volle Inhalt der QuelleHealy, Mary Rose. „Outer-sphere interactions in metal solvent extraction systems“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28712.
Der volle Inhalt der QuelleCocchi, Giovanni <1984>. „Thermodynamic and mechanical properties of polymer-solvent systems“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5782/1/cocchi_giovanni_tesi.pdf.
Der volle Inhalt der QuelleQuesto lavoro verte sulla caratterizzazione teorica e sperimentale delle proprietà termodinamiche, meccaniche e di trasporto di sistemi polimero-solvente. In particolare sono stati presi in considerazione sia sistemi polimero-solvente in cui la matrice polimerica si trova allo stato di gomma, che sistemi in cui la matrice polimerica esibisce comportamento vetroso, nonché sistemi nei quali si verifica la transizione vetrosa indotta dall'effetto plasticizzante del solvente. La modellazione termodinamica è stata effettuata utilizzando equazioni di stato avanzate e metodi idonei ad estenderne il campo di utilizzo alla condizione di non equilibrio, propria dello stato vetroso. Cinetiche di assorbimento non Fickiane sono state modellate utilizzando approcci fenomenologici e modelli cinetici avanzati.
Cocchi, Giovanni <1984>. „Thermodynamic and mechanical properties of polymer-solvent systems“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5782/.
Der volle Inhalt der QuelleQuesto lavoro verte sulla caratterizzazione teorica e sperimentale delle proprietà termodinamiche, meccaniche e di trasporto di sistemi polimero-solvente. In particolare sono stati presi in considerazione sia sistemi polimero-solvente in cui la matrice polimerica si trova allo stato di gomma, che sistemi in cui la matrice polimerica esibisce comportamento vetroso, nonché sistemi nei quali si verifica la transizione vetrosa indotta dall'effetto plasticizzante del solvente. La modellazione termodinamica è stata effettuata utilizzando equazioni di stato avanzate e metodi idonei ad estenderne il campo di utilizzo alla condizione di non equilibrio, propria dello stato vetroso. Cinetiche di assorbimento non Fickiane sono state modellate utilizzando approcci fenomenologici e modelli cinetici avanzati.
Bücher zum Thema "SOLVENT SYSTEMS"
Hunt, Andrew J., und Thomas M. Attard, Hrsg. Supercritical and Other High-pressure Solvent Systems. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788013543.
Der volle Inhalt der QuelleAugustijns, Patrick, und Marcus E. Brewster, Hrsg. Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69154-1.
Der volle Inhalt der QuellePatrick, Augustijns, und Brewster Marcus, Hrsg. Solvent systems and their selection in pharmaceutics and biopharmaceutics. New York, NY: Springer, 2007.
Den vollen Inhalt der Quelle findenCRC handbook of enthalpy data of polymer-solvent systems. Boca Raton, FL: Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenRisk Reduction Engineering Laboratory (U.S.) und Superfund Innovative Technology Evaluation Program (U.S.), Hrsg. CF Systems organics extraction process, New Bedford Harbor, Massachusetts: Applications analysis report. Cincinnati, Ohio: Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1990.
Den vollen Inhalt der Quelle findenFu, Jaw-Kwei. Pollutant sorption to soils and sediments in organic/aqueous solvent systems. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory, 1985.
Den vollen Inhalt der Quelle findenFu, Jaw-Kwei. Pollutant sorption to soils and sediments in organic/aqueous solvent systems. Athens, GA: U.S. Environmental Protection Agency, Environmental Research Laboratory, 1985.
Den vollen Inhalt der Quelle findenH, Russell J. Method for predicting equilibrium values in the solvent extraction of nickel in ammoniacal systems. Washington, D.C. (2401 E St., N.W., MS #9800, Washington 20241-0001): U.S. Dept. of the Interior, Bureau of Mines, 1991.
Den vollen Inhalt der Quelle findenNilsen, D. N. A method for predicting equilibrium values in the solvent extraction of copper in ammoniacal systems. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1988.
Den vollen Inhalt der Quelle findenAmerican Society of Heating, Refrigerating and Air-Conditioning Engineers., Hrsg. Reducing emission of halogenated refrigerants in refrigeration and air-conditioning equipment and systems. Atlanta, Ga: ASHRAE, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "SOLVENT SYSTEMS"
Kobayashi, Motoyasu. „Solvent Response“. In Biologically-Inspired Systems, 169–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92654-4_7.
Der volle Inhalt der QuelleOkada, Tadashi, und Hiroshi Miyasaka. „Solvent Effects“. In From Molecules to Molecular Systems, 243–61. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-66868-8_14.
Der volle Inhalt der QuelleZhang, Jack, Baodong Zhao und Bryan Schreiner. „Rare Earth Solvent Extraction Systems“. In Separation Hydrometallurgy of Rare Earth Elements, 79–169. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28235-0_4.
Der volle Inhalt der QuelleSurasarang, Soraya Hengsawas, und Robert O. Williams. „Co-solvent and Complexation Systems“. In Formulating Poorly Water Soluble Drugs, 215–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42609-9_5.
Der volle Inhalt der QuelleBen-Naim, Arieh. „Solvent Induced Effects on Protein Folding“. In Biologically-Inspired Systems, 69–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67227-0_4.
Der volle Inhalt der QuelleBunzl, K. „Ion-Exchange Kinetics in Heterogeneous Systems“. In Ion Exchange and Solvent Extraction, 229–74. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208846-6.
Der volle Inhalt der QuelleMartin, D. G. „Optimization of Countercurrent Chromatography Solvent Systems“. In ACS Symposium Series, 78–86. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0593.ch006.
Der volle Inhalt der QuelleSchwartz, Benjamin J., Jason C. King und Charles B. Harris. „The Molecular Basis of Solvent Caging“. In Ultrafast Dynamics of Chemical Systems, 235–48. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0916-1_8.
Der volle Inhalt der QuelleCorongiu, G., D. A. Estrin und L. Paglieri. „Computer Simulation for Chemical Systems: from Vacuum to Solution“. In Solvent Effects and Chemical Reactivity, 179–229. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-46931-6_4.
Der volle Inhalt der QuelleKalinitchev, A. I. „Investigation of Intraparticle Ion-Exchange Kinetics in Selective Systems“. In Ion Exchange and Solvent Extraction, 149–96. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003208846-4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "SOLVENT SYSTEMS"
Elsaesser, Thomas. „Femtosecond intramolecular proton transfer in hydrogen bonded systems“. In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45384.
Der volle Inhalt der QuelleStaib, Arnulf, Rossend Rey und James T. Hynes. „Ultrafast vibrational predissociation and relaxation in hydrogen-bonded systems“. In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45406.
Der volle Inhalt der QuelleGrest, Gary S., Pieter J. in 't Veld, Jeremy B. Lechman, Michio Tokuyama, Irwin Oppenheim und Hideya Nishiyama. „Molecular Simulations of Nanoparticles in an Explicit Solvent“. In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897804.
Der volle Inhalt der QuelleWilson, James A., Jonathan D. Wehking, Mark Trautman, Mark E. Blue und Ranganathan Kumar. „Modeling Phase Change Heat Transfer of Liquid/Vapor Systems in Free and Porous Media“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53232.
Der volle Inhalt der QuelleHu, Bingge, und Daoyong Yang. „Viscosity Modeling of Solvent-Water-Heavy Oil/Bitumen Systems at High Pressures and Elevated Temperatures“. In GOTECH. SPE, 2024. http://dx.doi.org/10.2118/219354-ms.
Der volle Inhalt der QuelleFlanagan, K., J. Walshaw, S. L. Price und J. M. Goodfellow. „Solvent interactions with Π ring systems in proteins“. In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47802.
Der volle Inhalt der QuelleChaustre Ruiz, Andres Javier, Maria Daniela Mayorga Ariza, Petro Babak und Apostolos Kantzas. „Complex Mass Transfer Phenomena in Bitumen Solvent Systems“. In SPE Canadian Energy Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212778-ms.
Der volle Inhalt der QuelleSmail, Timothy R., Annamarie M. Herb und Monica C. Hall. „Stabilization of Underground Solvent Storage Tanks“. In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4786.
Der volle Inhalt der QuelleAntal, Jr., Michael Jerry. „WATER:A TRADITIONAL SOLVENT PREGNANT WITH NEW APPLICATIONS“. In Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/icpws-1994.70.
Der volle Inhalt der QuelleJossy, C., T. Frauenfeld und V. Rajan. „Partitioning of Bitumen-Solvent Systems into Multiple Liquid Phases“. In Canadian International Petroleum Conference. Petroleum Society of Canada, 2008. http://dx.doi.org/10.2118/2008-157.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "SOLVENT SYSTEMS"
Neuman, R. D. Interfacial chemistry in solvent extraction systems. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/6951454.
Der volle Inhalt der QuelleNeuman, R. D. Interfacial chemistry in solvent extraction systems. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/6568063.
Der volle Inhalt der QuelleShinnar, R., Z. Ludmer und A. Ullmann. Hydrogen recovery by novel solvent systems. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5856433.
Der volle Inhalt der QuelleNeuman, R. Interfacial chemistry in solvent extraction systems. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/5039703.
Der volle Inhalt der QuelleClark, Sue B. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle. Office of Scientific and Technical Information (OSTI), Oktober 2016. http://dx.doi.org/10.2172/1330466.
Der volle Inhalt der QuelleShinnar, R., Z. Ludmer und A. Ullmann. Hydrogen recovery by novel solvent systems. Final report. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/10126448.
Der volle Inhalt der QuelleBaes, Jr., C. SXLSQI: A program for modeling solvent extraction systems. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/1992342.
Der volle Inhalt der QuelleLevitskaia, Tatiana G., Sayandev Chatterjee und Natasha K. Pence. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1379450.
Der volle Inhalt der QuelleMobley, Paul. Final Technical Report - Advanced CO2 Capture Solvent Systems for Dynamic Power Generation. Office of Scientific and Technical Information (OSTI), Dezember 2022. http://dx.doi.org/10.2172/2283073.
Der volle Inhalt der QuelleNeuman, R. D. Interfacial chemistry in solvent extraction systems. Progress report, June 1, 1991--May 31, 1992. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/10138678.
Der volle Inhalt der Quelle