Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solvent system“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solvent system" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solvent system"
Raksajati, Anggit, Minh Ho und Dianne Wiley. „Solvent Development for Post-Combustion CO2 Capture: Recent Development and Opportunities“. MATEC Web of Conferences 156 (2018): 03015. http://dx.doi.org/10.1051/matecconf/201815603015.
Der volle Inhalt der QuelleHR, Kuyakhi. „Estimation of Viscosity of the N-Alkane (C1-C 4) in Bitumen System Using Adaptive Neuro-Fuzzy Interference System (ANFIS)“. Petroleum & Petrochemical Engineering Journal 4, Nr. 3 (2020): 1–5. http://dx.doi.org/10.23880/ppej-16000233.
Der volle Inhalt der QuelleTan, Zhe, Yuhan Liu und Bo Huang. „A highly efficient three-solvent methodology for separating colloidal nanoparticles“. Nanoscale 14, Nr. 14 (2022): 5482–87. http://dx.doi.org/10.1039/d2nr00495j.
Der volle Inhalt der QuelleWatanabe, Kei, Taiki Nakamura, Byoung Suhk Kim und Ick Soo Kim. „Preparation and Characteristics of Electrospun Polypropylene Fibers: Effect of Organic Solvents“. Advanced Materials Research 175-176 (Januar 2011): 337–40. http://dx.doi.org/10.4028/www.scientific.net/amr.175-176.337.
Der volle Inhalt der QuelleIGARI, Youichi. „Solvent recovery system.“ Circuit Technology 6, Nr. 3 (1991): 192–99. http://dx.doi.org/10.5104/jiep1986.6.3_192.
Der volle Inhalt der QuelleLiu, Lei-Gen, und Ji-Huan He. „Solvent evaporation in a binary solvent system for controllable fabrication of porous fibers by electrospinning“. Thermal Science 21, Nr. 4 (2017): 1821–25. http://dx.doi.org/10.2298/tsci160928074l.
Der volle Inhalt der QuelleSanders, Alyssa B., Jacob T. Zangaro, Nakoa K. Webber, Ryan P. Calhoun, Elizabeth A. Richards, Samuel L. Ricci, Hannah M. Work et al. „Optimization of Biocompatibility for a Hydrophilic Biological Molecule Encapsulation System“. Molecules 27, Nr. 5 (27.02.2022): 1572. http://dx.doi.org/10.3390/molecules27051572.
Der volle Inhalt der QuelleSun, Shanhu, Haobin Zhang, Jinjiang Xu, Shumin Wang, Hongfan Wang, Zhihui Yu, Lang Zhao, Chunhua Zhu und Jie Sun. „The competition between cocrystallization and separated crystallization based on crystallization from solution“. Journal of Applied Crystallography 52, Nr. 4 (08.07.2019): 769–76. http://dx.doi.org/10.1107/s1600576719008094.
Der volle Inhalt der QuelleCipta, Oktavianus Hendra, Anita Alni und Rukman Hertadi. „Molecular Dynamics Study of Candida rugosa Lipase in Water, Methanol, and Pyridinium Based Ionic Liquids“. Key Engineering Materials 874 (Januar 2021): 88–95. http://dx.doi.org/10.4028/www.scientific.net/kem.874.88.
Der volle Inhalt der QuelleTsukagoshi, Norihiko, und Rikizo Aono. „Entry into and Release of Solvents byEscherichia coli in an Organic-Aqueous Two-Liquid-Phase System and Substrate Specificity of the AcrAB-TolC Solvent-Extruding Pump“. Journal of Bacteriology 182, Nr. 17 (01.09.2000): 4803–10. http://dx.doi.org/10.1128/jb.182.17.4803-4810.2000.
Der volle Inhalt der QuelleDissertationen zum Thema "Solvent system"
Ghosh, Gargi. „Investigation on solute-solute, solute-solvent and solvent-solvent interactions prevailing in some liquid system“. Thesis, University of North Bengal, 2009. http://hdl.handle.net/123456789/1351.
Der volle Inhalt der QuelleHoy, Thomas Lavelle. „Optimizing Solvent Blends for a Quinary System“. University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1462199621.
Der volle Inhalt der QuelleGupta, Bindu 1963. „Solubility of anthracene in complex solvent system“. Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/276989.
Der volle Inhalt der QuelleFowler, Michael James. „Construction of prototype system for directional solvent extraction desalination“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76130.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 37-38).
Directional solvent extraction has been demonstrated as a low temperature, membrane free desalination process. This method dissolves the water into an inexpensive, benign directional solvent, rejects the contaminants, then recovers pure water, and re-uses the solvent. In order to bring this technology closer to real world application, a continuous process prototype for a directional solvent extraction system was developed and tested. Octanoic acid was used as the solvent of choice, and a system capable of producing up to 7 gallons per day of fresh water was constructed. The system was tested to effectively desalinate the feed water, and the total system power was less than 7 kW. The system was constructed and first tested to run fresh water and solvent through it. Fresh water was dissolved in and separated, as expected, from the solvent at a rate of about 2 gpd. Saline water containing 3.5% sodium chloride was then used as feedwater and the desalinated water was recovered at a rate of about 1 gpd with an average salinity of 0.175%. Effective continuous operation of the directional solvent extraction prototype was demonstrated. Certain design improvements to increase efficiency, optimize component sizes, and decrease energy consumption are suggested. The demonstrated system has a wide range of applications, including production of fresh water from the sea, as well as, treatment of produced and flowback water from shale gas and oil extraction.
by Michael James Fowler.
S.B.
Brunet, Jean-Christophe. „An expert system for solvent-based separation process synthesis“. Thesis, Virginia Tech, 1992. http://hdl.handle.net/10919/42949.
Der volle Inhalt der QuelleMaster of Science
Tawfik, Wahid Yosry. „Design of optimal fuel grade ethanol recovery system using solvent extraction“. Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/11152.
Der volle Inhalt der QuelleBHANDARI, SHASHANK. „Design of a solvent recovery system in a pharmaceutical manufacturing plant“. Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190901.
Der volle Inhalt der QuelleAbdul, Manaf Norhuda. „MANAGEMENT DECISION SUPPORT SYSTEM OF SOLVENT-BASED POST-COMBUSTION CARBON CAPTURE“. Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16567.
Der volle Inhalt der QuelleMukherjee, P. „Solvent-free, triphase catalytic oxidation reactions over TS-1/H2O2 system“. Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2000. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2277.
Der volle Inhalt der QuelleAlturaihi, Haydar. „Biocatalysis of lipoxygenase in a model system using selected organic solvent media“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96760.
Der volle Inhalt der QuelleLa biocatalyse de la lipoxygénase purifiée, obtenus à partir de la graine de soja (LOX-1B: EC 1.13.11.12), a été étudiée en milieux micellaire ternaire et en monophasique organique, en utilisant l'acide linoléique comme substrat modèle. Le solvant organique, utilisé dans cette étude, a été utilisé à différentes concentrations dans le système micellaire ternaire, composé d'une solution tampon Tris-HCl (0,1 M, pH 9,0) et 10 µM d'un surfactant, le Tween-40. Les résultats obtenus ont démontré qu'il y a une augmentation de 1,4 et 1,7 fois de l'activité enzymatique de la LOX en utilisant, respectivement, soit du l'iso-octane à 2% ou soit du l'hexane à 2%, comme le solvant organique en comparaison avec celle en milieux aqueux. Les paramètres cinétiques, comportant les valeurs de Km et de Vmax, le choix de surfactant ainsi que la température et le pH optimal de la réaction ont été étudiés. Les effets de différents paramètres tels que l'activité initiale de l'eau (aw) du 0,23 à 0,75, l'agitation du 0 à 200 rpm, la température de la réaction du 20 à 45ºC et la stabilité thermique de l'activité de la LOX en milieux monophasiques organiques ont été aussi étudiés. Les résultats obtenus tendent à montré que les valeurs de Km et de Vmax en système micellaire ternaire, contenant de l' hexane à 2%, ont été de 7,7 µmol d'acide linoléique et 30,0 nmol d'hydroperyde de l'acide linoléique (HPODs)/mg protéine/min, respectivement, en comparaison à des valeurs de 20,7 µmol d'acide linoléique et 8,3 nmol HPODs/mg protéine/min dans les milieux monophasiques organiques, respectivement. De plus, les résultats expérimentaux ont démontré que l'activité spécifique maximale de la LOX pour les deux systèmes aqueux et micellaire ternaire a été obtenue à pH 9,0, avec aussi une activité minimale à pH 6,0 pour le système aqueux et à pH 7,0 pour le système micellaire ternaire. L'énergie d'activation (Ea) du système de réaction de la LOX était d'une valeur de 9,87 kJ/mol ou 2,36 kcal/mol. La demi-vie (T50) de LOX a été déterminée à 27,61 min dans le milieu aqueux, 66,63 min dans le milieu micellaire ternaire et 138,6 min dans les milieux monophasiques organiques.
Bücher zum Thema "Solvent system"
Washington (State). Hazardous Waste and Toxics Reduction Program., Hrsg. Optimizing your parts cleaning system: Alternatives to hazardous solvents. [Olympia, Wash.]: Hazardous Waste and Toxics Reduction Program, Washington State Dept. of Ecology, 1996.
Den vollen Inhalt der Quelle findenMassachusetts. Dept. of Environmental Protection. Office of Technical Assistance. Deluxe's solvent-free printing system. [Boston, Mass.]: Office of Technical Assistance, Executive Office of Environmental Affairs, Commonwealth of Massachusetts, 1994.
Den vollen Inhalt der Quelle findenBurston, Mark William. The hydrogeology and chlorinated hydrocarbon solvent pollution of the Coventry aquifer system. Birmingham: University of Birmingham, 1994.
Den vollen Inhalt der Quelle findenMacNiven, Iain. The use of the BR solvent recovery system in an anatomic pathology laboratory. [Toronto]: Ontario Environment, 1993.
Den vollen Inhalt der Quelle findenYi, Chae-wŏn. Sinʼgyŏng toksŏng mulchil ŭi toksŏng chagyong yŏnghyang yŏnʼgu =: Effects of organic solvent in neural stem cell and hippocampal neuron. [Seoul]: Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng, 2007.
Den vollen Inhalt der Quelle finden1920-, Jackson D. K., Canada. Technology Development and Technical Services Branch. und Development & Demonstration of Resource & Energy Conservation Technology Program., Hrsg. Development of a system to combine solvent recovery with the recovery of heat from residual organic wastes. Ottawa: The Branch, 1989.
Den vollen Inhalt der Quelle findenJohan, De Kleer, Hrsg. Building problem solvers. Cambridge, Mass: MIT Press, 1993.
Den vollen Inhalt der Quelle findenKlir, George J. Architecture of Systems Problem Solving. Boston, MA: Springer US, 2003.
Den vollen Inhalt der Quelle findenJohn, Boardman. Systemic thinking: Building maps for worlds of systems. Hoboken, New Jersey: Wiley, 2013.
Den vollen Inhalt der Quelle findenCheng, Tracey Kim. A graph based system solving symetric and sparse linear systems of equations. Oxford: Oxford Brookes University, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Solvent system"
Yang, Zhen-Zhen, Qing-Wen Song und Liang-Nian He. „PEG/scCO2 Biphasic Solvent System“. In SpringerBriefs in Molecular Science, 17–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31268-7_3.
Der volle Inhalt der QuellePeterson, R. A., C. L. Crawford, F. F. Fondeur und T. L. White. „Radiation Stability of Calixarene-Based Solvent System“. In ACS Symposium Series, 45–55. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0757.ch004.
Der volle Inhalt der QuelleAli, Khursheed, Tijo Cherian, Saher Fatima, Quaiser Saquib, Mohammad Faisal, Abdulrahman A. Alatar, Javed Musarrat und Abdulaziz A. Al-Khedhairy. „Role of Solvent System in Green Synthesis of Nanoparticles“. In Green Synthesis of Nanoparticles: Applications and Prospects, 53–74. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5179-6_3.
Der volle Inhalt der QuelleDickert, F. L., G. Bertlein, K. Reif, G. Mages und H. Kimmel. „Ionic Sensor Layers on Microelectronic Structures for the Detection of Solvent Vapours“. In Micro System Technologies 90, 669–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_96.
Der volle Inhalt der QuelleLangone, Marta A. P., und Geraldo L. Sant’Anna. „Enzymatic Synthesis of Medium-Chain Triglycerides in a Solvent-Free System“. In Twentieth Symposium on Biotechnology for Fuels and Chemicals, 759–70. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-4612-1604-9_69.
Der volle Inhalt der QuelleLangone, Marta A. P., Melissa E. de Abreu, Michelle J. C. Rezende und Geraldo L. Sant’Anna. „Enzymatic Synthesis of Medium Chain Monoglycerides in a Solvent-Free System“. In Biotechnology for Fuels and Chemicals, 987–96. Totowa, NJ: Humana Press, 2002. http://dx.doi.org/10.1007/978-1-4612-0119-9_80.
Der volle Inhalt der QuelleAbd el Rahman, S., C. Goldammer und E. Bayer. „A novel solvent system for the synthesis of long-chain oligohomopeptides“. In Peptides 1992, 300–301. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1470-7_125.
Der volle Inhalt der QuelleItoh, Toshiyuki, Yoshihito Nishimura, Masaya Kashiwagi und Makoto Onaka. „Efficient Lipase-Catalyzed Enantioselective Acylation in an Ionic Liquid Solvent System“. In ACS Symposium Series, 251–61. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0856.ch021.
Der volle Inhalt der QuelleYang, Kap-Seung, Michael H. Theil und John A. Cuculo. „Lyotropic Mesophases of Cellulose in the Ammonia—Ammonium Thiocyanate Solvent System“. In ACS Symposium Series, 156–83. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0384.ch011.
Der volle Inhalt der QuelleFregolente, Patricia Bogalhos Lucente, Leonardo Vasconcelos Fregolente, Gláucia Maria F. Pinto, Benedito César Batistella, Maria Regina Wolf-Maciel und Rubens Maciel Filho. „Monoglycerides and Diglycerides Synthesis in a Solvent-Free System by Lipase-Catalyzed Glycerolysis“. In Biotechnology for Fuels and Chemicals, 285–92. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-526-2_29.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solvent system"
Zapton, James G. „Portable Solvent Recycling System“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950243.
Der volle Inhalt der QuelleKarlström, G., und P. Å Malmqvist. „Theoretical aspects on electron transfer in the Fe2+–Fe3+ system“. In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45416.
Der volle Inhalt der QuelleRasrendra, Carolus Borromeous, Ronny Purwadi, Christian Christian, Harry James Cho und Haryo Pandu Winoto. „Lignocellulosic biomass fractionation through biphasic-solvent system“. In THE 7TH BIOMEDICAL ENGINEERING’S RECENT PROGRESS IN BIOMATERIALS, DRUGS DEVELOPMENT, AND MEDICAL DEVICES: The 15th Asian Congress on Biotechnology in conjunction with the 7th International Symposium on Biomedical Engineering (ACB-ISBE 2022). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0194290.
Der volle Inhalt der QuelleSmail, Timothy R., Annamarie M. Herb und Monica C. Hall. „Stabilization of Underground Solvent Storage Tanks“. In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4786.
Der volle Inhalt der QuelleGulati, Shivani, M. Sachdeva und K. K. Bhasin. „Capping agents in nanoparticle synthesis: Surfactant and solvent system“. In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032549.
Der volle Inhalt der QuelleSingh, Anil Kr. „Kinetics Investigation of Solvent Polarity on Reaction Rate for Solvolysis of Ethyl Caprylate Ester in Binary Solvent System“. In 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART). IEEE, 2021. http://dx.doi.org/10.1109/smart52563.2021.9676306.
Der volle Inhalt der QuelleXu, Yuan, und Qunxiong Zhu. „Extension theory-based modeling for purified terephthalic acid solvent system“. In 2010 8th IEEE International Conference on Control and Automation (ICCA). IEEE, 2010. http://dx.doi.org/10.1109/icca.2010.5524140.
Der volle Inhalt der QuelleLi, Chunyu, Quanhui Li, Tingting Yao, Zhengyang Wang, Luoyun Zheng und Jiaying Xin. „Chemo enzymatic Synthesis for Poly3-hydroxypropionate in Solvent-free System“. In 2016 6th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mcei-16.2016.87.
Der volle Inhalt der QuelleDavood Abadi Farahani, Mohammad Hossein. „Organic solvent nanofiltration membrane for vegetable oil refining“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/srfh3809.
Der volle Inhalt der QuelleZinth, W., S. Engleitner und M. Seel. „Wavepacket Motion observed in an Ultrafast Electron Transfer System“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.25.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Solvent system"
Twitchell, K. E., und N. L. Skinner. Hazardous Solvent Substitution Data System tutorial. Office of Scientific and Technical Information (OSTI), Juli 1993. http://dx.doi.org/10.2172/10194568.
Der volle Inhalt der QuellePeterson, R. A. Radiation Stability of Calixarene Based Solvent System. Office of Scientific and Technical Information (OSTI), Januar 1999. http://dx.doi.org/10.2172/4851.
Der volle Inhalt der QuelleValentine, Jessica, Alex Zoelle, Sally Homsy, Hari Mantripragada, Aaron Kilstofte, Mike Sturdivan, Mark Steutermann und Timothy Fout. Direct Air Capture Case Studies: Solvent System. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1893369.
Der volle Inhalt der QuelleLee, D. D. Density Changes in the Optimized CSSX Solvent System. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/885674.
Der volle Inhalt der QuelleHaire, M. J., M. S. Grady und R. T. Jubin. Availability assessment of a centrifugal contactor solvent extraction system. Office of Scientific and Technical Information (OSTI), August 1985. http://dx.doi.org/10.2172/711842.
Der volle Inhalt der QuelleBranham-Haar, K. A., und K. E. Twitchell. Hazardous Solvent Substitution Data System reference manual. Revision 1. Office of Scientific and Technical Information (OSTI), Juli 1993. http://dx.doi.org/10.2172/10194048.
Der volle Inhalt der QuelleMoyer, Bruce A., Laetitia Helene Delmau, Joseph F. Birdwell Jr und Joanna McFarlane. Caustic-Side Solvent-Extraction Modeling for Hanford Interim Pretreatment System. Office of Scientific and Technical Information (OSTI), Juni 2008. http://dx.doi.org/10.2172/969952.
Der volle Inhalt der QuelleMoyer, B. A., J. F. Birdwell, L. H. Delmau und J. McFarlane. Caustic-Side Solvent-Extraction Modeling for Hanford Interim Pretreatment System. Office of Scientific and Technical Information (OSTI), Juni 2008. http://dx.doi.org/10.2172/951061.
Der volle Inhalt der QuelleBrown, Alfred, und Nathan Brown. Novel Solvent System for Post Combustion CO{sub 2} Capture. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1155036.
Der volle Inhalt der QuelleCasella, V. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT GAMMA MONITORS SYSTEM FINAL REPORT. Office of Scientific and Technical Information (OSTI), Juni 2007. http://dx.doi.org/10.2172/910462.
Der volle Inhalt der Quelle