Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solvent-solvent“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solvent-solvent" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solvent-solvent"
Zhou, Shi-Qi. „Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential“. Communications in Theoretical Physics 44, Nr. 2 (August 2005): 365–70. http://dx.doi.org/10.1088/6102/44/2/365.
Der volle Inhalt der QuelleGrigorescu, Gabriela, Silvia Ioan und Bogdan C. Simionescu. „Solvent/solvent/polymer ternary systems“. Polymer Bulletin 31, Nr. 1 (Juli 1993): 123–27. http://dx.doi.org/10.1007/bf00298774.
Der volle Inhalt der QuelleChan, Joel, Joseph Chee Chang, Tom Hope, Dafna Shahaf und Aniket Kittur. „SOLVENT“. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (November 2018): 1–21. http://dx.doi.org/10.1145/3274300.
Der volle Inhalt der QuelleLuca, Alfio A. Tamburello, Philippe Hébert, Pierre F. Brevet und Hubert H. Girault. „Surface second-harmonic generation at air/solvent and solvent/solvent interfaces“. J. Chem. Soc., Faraday Trans. 91, Nr. 12 (1995): 1763–68. http://dx.doi.org/10.1039/ft9959101763.
Der volle Inhalt der Quelleda Silva, Domingas C., Ingrid Ricken, Marcos A. do R. Silva und Vanderlei G. Machado. „Solute-solvent and solvent-solvent interactions in the preferential solvation of Brooker's merocyanine in binary solvent mixtures“. Journal of Physical Organic Chemistry 15, Nr. 7 (2002): 420–27. http://dx.doi.org/10.1002/poc.519.
Der volle Inhalt der QuelleSouvignet, Isabelle, und Susan V. Olesik. „Solvent-Solvent and Solute-Solvent Interactions in Liquid Methanol/Carbon Dioxide Mixtures“. Journal of Physical Chemistry 99, Nr. 45 (November 1995): 16800–16803. http://dx.doi.org/10.1021/j100045a048.
Der volle Inhalt der QuelleVrentas, J. S., C. M. Vrentas und N. Faridi. „Effect of Solvent Size on Solvent Self-Diffusion in Polymer−Solvent Systems“. Macromolecules 29, Nr. 9 (Januar 1996): 3272–76. http://dx.doi.org/10.1021/ma9511356.
Der volle Inhalt der QuelleVillacampa, Manuel, Elena Diaz de Apodaca, Jose R. Quintana und Issa Katime. „Diblock Copolymer Micelles in Solvent Binary Mixtures. 2. Selective Solvent/Good Solvent“. Macromolecules 28, Nr. 12 (Juni 1995): 4144–49. http://dx.doi.org/10.1021/ma00116a014.
Der volle Inhalt der QuelleKohl, Stephan W., Frank W. Heinemann, Markus Hummert, Walter Bauer und Andreas Grohmann. „Solvent dependent reactivity: solvent activation vs. solvent coordination in alkylphosphane iron complexes“. Dalton Transactions, Nr. 47 (2006): 5583. http://dx.doi.org/10.1039/b610792c.
Der volle Inhalt der QuelleYAMAGUCHI, T., und Y. KIMURA. „Effects of solute-solvent and solvent-solvent attractive interactions on solute diffusion“. Molecular Physics 98, Nr. 19 (10.10.2000): 1553–63. http://dx.doi.org/10.1080/00268970009483361.
Der volle Inhalt der QuelleDissertationen zum Thema "Solvent-solvent"
Chun-Te, Lin Justin. „Organic solvent nanofiltration membrane cascades for solvent exchange and purification“. Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/11977.
Der volle Inhalt der QuelleMęcfel-Marczewski, Joanna. „Self Incompatible Solvent“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001195.
Der volle Inhalt der QuelleIn this thesis a new principle of Self Incompatible Solvent is introduced. It is shown theoretically that a preexisting mixture of two substances (compound 1 and 2) with unfavorable interactions will readily dissolve a third compound because it diminishes the unfavorable interaction between the compound 1 and 2 by dilution. This behavior should be the stronger the more unfavorable the interactions between compound 1 and 2 are. However, substances with strong unfavorable interactions will not mix. Therefore the idea pursued here is to enforce the desired preexisting mixture for example by linking compound 1 covalently to compound 2. Such a molecule that is composed of two incompatible parts is called Self Incompatible Solvent in this work. In this thesis examples of incompatible compounds that show moderate incompatibility are chosen, therefore it was possible to do a comparison between simple physical mixtures and covalently linked incompatible molecules. The theoretical prediction of the theory is compared with experiments. This principle is calculated quantitatively for binary and ternary mixtures and compared with the experimental results in three distinct series of experiments: i) by using solution calorimetry and calculation of the interaction parameters between compounds 3 and the preexisting binary mixture of compound 1 and 2, ii) by using solution calorimetry and calculation of the interaction parameters between compound 3 and the Self Incompatible Solvent that correspond to the mixtures used in (i) and iii) from the saturation solubility of compound 3 in the Self Incompatible Solvent. The results obtained from the theoretical prediction and these obtained from the three different series of experiments show the same trend: the self incompatibility of the solvent improves the dissolution process
Rodarte, Alma Isabel Marín. „Predispersed solvent extraction“. Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/45173.
Der volle Inhalt der QuelleA new solvent extraction method has been developed for the extraction of metal and organic ions from very dilute aqueous solutions. The new method, which has been named Predispersed Solvent Extraction (POSE), is based on the principle that 1 there is no need to comminute both phases. All that is necessary is to comminute the solvent phase prior to contacting it with the feed. This is done by converting the solvent into aphrons, which are micron-sized globules encapsulated in a soapy film. Since the aphrons are so small, it takes a long time for the solvent to rise to the surface under the influence of gravity alone. Therefore, the separation is expedited by piggy-back flotation of the aphrons on specially prepared gas bubbles, which are somewhat larger than aphrons and are called colloidal gas aphrons (CGA).
Copper, uranium and chromium ions, and alizarin yellow were extracted from very dilute aqueous solutions using PDSE. Tests were performed in a vertical glass column in both batch and continuous modes, and in a continuous horizontal trough. The new solvent extraction procedure worked very efficiently and very quickly under laboratory conditions. Higher than 99% extraction was achieved in many of the tests performed.
Master of Science
Xu, Zhuang. „PARTITIONING OF SOLVENT MOLECULES SURROUNGDING POLYMER CHIANS IN SOLVENT-SHIFTING PROCESS“. University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555690517286259.
Der volle Inhalt der QuelleWang, Nan. „CO2 Separation - from Aqueous Amine Solvent to Ionic Liquid-based solvent“. Licentiate thesis, Luleå tekniska universitet, Energivetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84244.
Der volle Inhalt der QuelleTarkan, Haci Mustafa. „Air-assisted solvent extraction“. Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102735.
Der volle Inhalt der QuelleThe novel contribution in this thesis is the production of solvent-coated bubbles by exploiting foaming properties of kerosene-based solvents.
The basic set-up is a chamber to generate foam which is injected through a capillary (orifice diameter 2.5 mm) to produce solvent-coated bubbles (ca. 4.4 mm) which release into the aqueous phase. This generates a solvent specific surface area of ca. 3000 cm-1, equivalent to solvent droplets of ca. 20 mum. Demonstrating the process on dilute Cu solutions (down to 25 mg/L), high aqueous/organic ratios (ca. 75:1) and extractions are achieved. The solvent readily disengages to accumulate at the surface of the aqueous solution.
The LIX family of extractants imparts some foaming to kerosene based solvents but D2EHPA does not. An extensive experimental program determined that 1.5 ppm silicone oil provided the necessary foaming action without affecting extraction or stripping efficiency, greatly expanding the range of solvents that can be used in AASX.
To complement the foam study, films on bubbles blown in solvent were examined by interferometry (film thickness) and infra-red spectroscopy (film composition). A "bound" solvent layer was identified with an initial thickness of ca. 2 - 4 mum, comparable to that determined indirectly (by counting bubbles in an AASX trial and measuring solvent consumption). The film composition appeared to be independent of film thickness as it decreased with time.
As a start to scaling up, the single bubble generation system was adapted by installing up to 8 horizontal capillaries. The bubbles generated were ca. 3.4 mm. Trials showed the multi-bubble set up was a simple replication of the individual bubble case. Preliminary analysis of kinetic data shows a fit to a first-order model.
Brogan, Alex P. S. „Solvent-free liquid proteins“. Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.573415.
Der volle Inhalt der QuelleSackin, Robert. „Solvent ingress in polymers“. Thesis, University of Surrey, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326197.
Der volle Inhalt der QuelleBajpayee, Anurag. „Directional solvent extraction desalination“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78539.
Der volle Inhalt der Quelle"September 2012." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 131-137).
World water supply is struggling to meet demand. Production of fresh water from the oceans could supply this demand almost indefinitely. As global energy consumption continues to increase, water and energy resources are getting closely intertwined, especially with regards to the water consumption and contamination in the unconventional oil and gas industry. Development of effective, affordable desalination and water treatment technologies is thus vital to meeting future demand, maintaining economic development, enabling continued growth of energy resources, and preventing regional and international conflict. We have developed a new low temperature, membrane-free desalination technology using directional solvents capable of extracting pure water from a contaminated solution without themselves dissolving in the recovered water. This method dissolves the water into a directional solvent by increasing its temperature, rejects salts and other contaminants, then recovers pure water by cooling back to ambient temperature, and re-uses the solvent. The directional solvents used here include soybean oil, hexanoic acid, decanoic acid, and octanoic acid with the last two observed to be the most effective. These fatty acids exhibit the required characteristics by having a hydrophilic carboxylic acid end which bonds to water molecules but the hydrophobic chain prevents the dissolution of water soluble salts as well the dissolution of the solvent in water. Directional solvent extraction may be considered a molecular-level desalination approach. Directional Solvent Extraction circumvents the need for membranes, uses simple, inexpensive machinery, and by operating at low temperatures offers the potential for using waste heat. This technique also lends itself well to treatment of feed waters over a wide range of total dissolved solids (TDS) levels and is one of the very few known techniques to extract water from saturated brines. We demonstrate >95% salt rejection for seawater TDS concentrations (35,000 ppm) as well as for oilfield produced water TDS concentrations (>100,000 ppm) and saturated brines (300,000 ppm) through a benchtop batch process, and recovery ratios as high as 85% for feed TDS of 35,000 ppm through a multi-stage batch process. We have also designed, constructed, and demonstrated a semi-continuous process prototype. The energy and economic analysis suggests that this technique could become an effective, affordable method for seawater desalination and for treatment of produced water from unconventional oil and gas extraction.
by Anurag Bajpayee.
Ph.D.
TRUJILLO, REBOLLO ANDRES. „SOLVENT EXTRACTION OF MOLYBDENUM“. Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184009.
Der volle Inhalt der QuelleBücher zum Thema "Solvent-solvent"
Chadwick, Oliver, H. Ross Anderson, J. Martin Bland und John Ramsey. Solvent Abuse. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3184-4.
Der volle Inhalt der QuelleBarrett, Kevin. Solvent abuse. London: National Society for the Prevention of Cruelty to Children, 1986.
Den vollen Inhalt der Quelle findenConnolly, Sean. Solvent abuse. Oxford: Heinemann Library, 2003.
Den vollen Inhalt der Quelle findenBirmingham Advisory Committee on Solvent Abuse. Solvent abuse. Birmingham: BACSA, 1987.
Den vollen Inhalt der Quelle findenBureau, National Children's, Hrsg. Solvent misuse. London: National Children's Bureau, 1986.
Den vollen Inhalt der Quelle findenBirmingham Advisory Committee on Solvent Abuse., Hrsg. Solvent abuse. Birmingham: Birmingham Advisory Committee on Solvent Abuse, 1989.
Den vollen Inhalt der Quelle findenArlien-Søborg, Peter. Solvent neurotoxicity. Boca Raton, Fla: CRC Press, 1992.
Den vollen Inhalt der Quelle findenUnited States. Environmental Protection Agency. Office of Emergency and Remedial Response. und United States. Environmental Protection Agency. Office of Research and Development., Hrsg. Solvent extraction. Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, 1994.
Den vollen Inhalt der Quelle findenLeahy, R. B. Laboratory comparison of solvent-loaded and solvent-free emulsions. Salem, OR: Oregon Dept. of Transportation, Research Group, 2000.
Den vollen Inhalt der Quelle findenCocchiarella, Linda. Stoddard solvent toxicity. Atlanta, GA: U.S. Dept. of Health & Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Solvent-solvent"
Gooch, Jan W. „Solvent“. In Encyclopedic Dictionary of Polymers, 678–82. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_10886.
Der volle Inhalt der QuelleLynch, Gordon S., David G. Harrison, Hanjoong Jo, Charles Searles, Philippe Connes, Christopher E. Kline, C. Castagna et al. „Solvent“. In Encyclopedia of Exercise Medicine in Health and Disease, 800. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_3053.
Der volle Inhalt der QuelleGooch, Jan W. „Solvent“. In Encyclopedic Dictionary of Polymers, 924. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14823.
Der volle Inhalt der QuelleBährle-Rapp, Marina. „solvent“. In Springer Lexikon Kosmetik und Körperpflege, 520. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_9815.
Der volle Inhalt der QuelleMohamed, Khayet. „Bore Liquid: Solvent and Non-solvent“. In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_1180-4.
Der volle Inhalt der QuelleJones, David T., und David R. Woods. „Solvent Production“. In Clostridia, 105–44. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-9718-3_4.
Der volle Inhalt der QuelleMedrzycka, Krystyna, und Sebastian Pastewski. „Solvent Sublation“. In Chemistry for the Protection of the Environment 2, 67–74. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0405-0_8.
Der volle Inhalt der QuelleMorgan, Michael M., MacDonald J. Christie, Luis De Lecea, Jason C. G. Halford, Josee E. Leysen, Warren H. Meck, Catalin V. Buhusi et al. „Solvent Abuse“. In Encyclopedia of Psychopharmacology, 1252. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_3587.
Der volle Inhalt der QuelleGooch, Jan W. „Adhesive, Solvent“. In Encyclopedic Dictionary of Polymers, 20. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_276.
Der volle Inhalt der QuelleGooch, Jan W. „Differentiating Solvent“. In Encyclopedic Dictionary of Polymers, 219. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_3649.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solvent-solvent"
Gupta, Subodh Chandra, Simon Gittins, Arun Sood und Khalil Zeidani. „Optimal Amount of Solvent in Solvent Aided Process“. In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/137543-ms.
Der volle Inhalt der QuelleGupta, Subodh Chandra, und Simon Gittins. „Measurement of Recovered Solvent in Solvent Aided Process“. In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/136402-ms.
Der volle Inhalt der QuelleIvory, J., T. Frauenfeld und C. Jossy. „Thermal Solvent Reflux and Thermal Solvent Hybrid Experiments“. In Canadian International Petroleum Conference. Petroleum Society of Canada, 2007. http://dx.doi.org/10.2118/2007-067.
Der volle Inhalt der QuelleChang, Jeannine, John Joseph Ivory, Ken Forshner und Yu Feng. „Impact Of Solvent Loss During Solvent Injection Processes“. In SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers, 2013. http://dx.doi.org/10.2118/165476-ms.
Der volle Inhalt der QuelleRasaiah, Jayendran C., und Jianjun Zhu. „Solvent dynamics and electron transfer reactions“. In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45397.
Der volle Inhalt der QuelleMialocq, J. C., P. Hébert, G. Baldacchino und T. Gustavsson. „Relaxation dynamics of a polar solvent cage around a nonpolar electronically excited solvent probe. A subpicosecond laser study“. In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45390.
Der volle Inhalt der QuelleBalos, Vasileios, Hossam Elgabarty, Martin Wolf, Thomas Kühne, Roland Netz, Douwe Jan Bonthuis, Naveen Kumar Kaliannan, Philip Loche, Tobias Kampfrath und Mohsen Sajadi. „Ultrafast solvent-to-solvent and solvent-to-solute energy transfer driven by single-cycle THz electric fields“. In Terahertz Emitters, Receivers, and Applications XII, herausgegeben von Manijeh Razeghi und Alexei N. Baranov. SPIE, 2021. http://dx.doi.org/10.1117/12.2594143.
Der volle Inhalt der QuelleMuguet, Francis F., und G. Wilse Robinson. „Energetics and formation of the ‘‘hydrated electron’’ within an itinerant radical model“. In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45404.
Der volle Inhalt der QuelleGrabowska, A. „Proton transfer reactions prepared by the hydrogen bonds in electronically excited polyatomic molecules“. In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45385.
Der volle Inhalt der QuelleDeclémy, Alain, und Claude Rullière. „Relaxation dynamics of the solvent cage around an excited molecule in solution“. In Ultrafast reaction dynamics and solvent effects. AIP, 1994. http://dx.doi.org/10.1063/1.45386.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Solvent-solvent"
Klatt, L. N. Caustic-Side Solvent Extraction Solvent-Composition Recommendation. Office of Scientific and Technical Information (OSTI), Mai 2002. http://dx.doi.org/10.2172/814130.
Der volle Inhalt der QuelleFraga, Carlos, Kai-For Mo, David Abrecht, Amanda Casella, Nicolas Uhnak, Zachary Kennedy und Gregg Lumetta. Solvent Exchange. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1983975.
Der volle Inhalt der QuelleLeonard, R. A. Caustic-side solvent extraction Flowsheet for optimized solvent. Office of Scientific and Technical Information (OSTI), Juli 2002. http://dx.doi.org/10.2172/799858.
Der volle Inhalt der QuelleDelmau, Laetitia Helene, und Bruce A. Moyer. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent. Office of Scientific and Technical Information (OSTI), Dezember 2012. http://dx.doi.org/10.2172/1057946.
Der volle Inhalt der QuelleMoyer, Bruce, und Nathan Bessen. Density of Next-Generation Caustic-Side Solvent Extraction Solvent. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1819565.
Der volle Inhalt der QuellePaffhausen, M. W., D. L. Smith und S. N. Ugaki. Solvent recycle/recovery. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6153281.
Der volle Inhalt der QuelleCrowder, M. L. Solvent Quality Testing. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/802626.
Der volle Inhalt der QuelleLeigh R. Martin und Bruce J. Mincher. TALSPEAK Solvent Degradation. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/971366.
Der volle Inhalt der QuelleBonnesen, P. V. Stability of the Caustic-Side Solvent Extraction (CSSX) Process Solvent: Effect of High Nitrite on Solvent Nitration. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/814158.
Der volle Inhalt der QuelleDuncan, Nathan C., Laetitia Helene Delmau, Dale Ensor, Denise L. Lee, Joseph F. Birdwell Jr, Talon G. Hill, Neil J. Williams et al. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium. Office of Scientific and Technical Information (OSTI), Juli 2013. http://dx.doi.org/10.2172/1087500.
Der volle Inhalt der Quelle