Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solvent media“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solvent media" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solvent media"
Kurniawansyah, Firman. „Pengembangan Teknologi Berbasis Media Air Subkritis dan CO2 Bertekanan untuk Intensifikasi Proses“. Jurnal Rekayasa Proses 13, Nr. 1 (01.07.2019): 1. http://dx.doi.org/10.22146/jrekpros.41868.
Der volle Inhalt der QuelleA. R. Rassoul, Ghiyath, und Laith S. Mahmmoud. „TREATING THE USED AUTOMOBILES OILS USING SOLVENTS“. Iraqi Journal of Chemical and Petroleum Engineering 11, Nr. 3 (30.09.2010): 9–14. http://dx.doi.org/10.31699/ijcpe.2010.3.2.
Der volle Inhalt der QuelleShakir, Firdews, Hussein Hussein und Zeinab Abdulwahhab. „Upgrading of Sharqy Baghdad Heavy Oil via N-Hexane Solvent“. Iraqi Journal of Chemical and Petroleum Engineering 23, Nr. 3 (30.09.2022): 59–66. http://dx.doi.org/10.31699/ijcpe.2022.3.8.
Der volle Inhalt der QuelleHussein, Hussein Qasim, und Ali Laith Abdulkarim. „Investigation of Binary Solvents Performance for Regeneration of Iraqi 15W- 40 Waste Lubricant“. Iraqi Journal of Chemical and Petroleum Engineering 17, Nr. 4 (30.12.2016): 83–94. http://dx.doi.org/10.31699/ijcpe.2016.4.8.
Der volle Inhalt der QuelleHemdan, Sokaina, Asma Al Jebaly und Fatma Ali. „The Impacts of Various Media on the Electronic Spectrum of Aniline Violet“. Academic Journal of Research and Scientific Publishing 2, Nr. 24 (05.04.2021): 28–55. http://dx.doi.org/10.52132/ajrsp.e.2021.242.
Der volle Inhalt der QuelleRoux, Denis C. D., Isabelle Jeacomine, Guillaume Maîtrejean, François Caton und Marguerite Rinaudo. „Characterization of Agarose Gels in Solvent and Non-Solvent Media“. Polymers 15, Nr. 9 (30.04.2023): 2162. http://dx.doi.org/10.3390/polym15092162.
Der volle Inhalt der QuelleDi Carmine, Graziano, Andrew P. Abbott und Carmine D'Agostino. „Deep eutectic solvents: alternative reaction media for organic oxidation reactions“. Reaction Chemistry & Engineering 6, Nr. 4 (2021): 582–98. http://dx.doi.org/10.1039/d0re00458h.
Der volle Inhalt der QuelleA. Mohammed, Abdul-Halim, und Mohammed J. Yass Kheder. „The Effect of Extraction Temperature and Solvent to Oil Ratio on Viscosity Index of Mixed-medium Lubricating Oil Fraction by Using Solvents Extraction“. Iraqi Journal of Chemical and Petroleum Engineering 10, Nr. 2 (30.06.2009): 13–18. http://dx.doi.org/10.31699/ijcpe.2009.2.3.
Der volle Inhalt der QuelleShakir, Ibtehal k., und Muslim A. Qasim. „Extraction of Aromatic Hydrocarbons from Lube Oil Using Different Co-Solvent“. Iraqi Journal of Chemical and Petroleum Engineering 16, Nr. 1 (30.03.2015): 79–90. http://dx.doi.org/10.31699/ijcpe.2015.1.8.
Der volle Inhalt der QuelleIstyami, Astri Nur, Tatang Hernas Soerawidjaja, Tirto Prakoso und Tri Ari Penia Kresnowati. „Performance of Various Organic Solvents as Reaction Media in Plant Oil Lipolysis with Plant Lipase“. Reaktor 18, Nr. 2 (24.08.2018): 71. http://dx.doi.org/10.14710/reaktor.18.2.71-75.
Der volle Inhalt der QuelleDissertationen zum Thema "Solvent media"
Bhattarai, Ajaya. „Polyelectrolyte-surfactant interactions in mixed solvent media“. Thesis, University of North Bengal, 2010. http://hdl.handle.net/123456789/1321.
Der volle Inhalt der QuelleFowler, Sandra Dee. „COPPER SOLVENT EXTRACTION FROM CHLORIDE-SULFATE MEDIA“. Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275369.
Der volle Inhalt der QuelleChoudhury, Ankan. „Physico-chemical investigation of solute-solute, solute-solvent and solvent-solvent interactions of some compounds in non-aqueous and mixed solvent media“. Thesis, Th 541.34:C552p, 2005. http://hdl.handle.net/123456789/704.
Der volle Inhalt der QuelleDioum, Ndeye. „Biocatalysis of immobilized lipoxygenase in organic solvent media“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0033/MQ64344.pdf.
Der volle Inhalt der QuelleKhamessan, Ali. „Chlorophyllase biocatalysis of chlorophyll in organic solvent media“. Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28798.
Der volle Inhalt der QuelleSpadina, Mario. „Solvation and Ion Specificity in Complex Media“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS020/document.
Der volle Inhalt der QuelleThe object of this thesis was to create models for two applications which readily appear in separation chemistry, namely the solid-liquid and the liquid-liquid extractions. The benefit of modelling in both cases is twofold. Studying the fundamental properties of ions and their solvation properties in the complex media, and simplifying the expression for important effects, enables us to construct the framework which can be used by both chemists in the laboratory, as well as the chemical engineers in the process design. For two applications we adapted two different systems, both of which can be considered as complex. The model system to study the solid-liquid separation were TiO$_{mathrm{2}}$ nanotubes dispersed in the aqueous solution. This system was studied by the means of Classical Density Functional Theory coupled with the charge regulation method, within the Grand-canonical ensemble. Indeed, the method proved to be successful in establishing the full description of the charge properties of TiO$_{mathrm{2}}$ nanotubes. In this case, we were interested in obtaining the description of ion inside the charged nanotubes under influence by the electric field (exhibited by nanotubes). Calculations predicted effects such as the difference in surface charge between the outer and the inner surface, or the violation of electroneutrality inside the nanotubes. It was demonstrated that the model was in the agreement with the experimental data. Moreover, the method can be directly used to predict titration for various techniques. A simple generalization of the proposed approach can be used to study the actual adsorption efficiency of the solid-liquid separation process. The model system to study the liquid-liquid extraction process included three distinct parts. The three parts were devoted to the cases on non-ionic, acidic ion exchangers, and finally the synergistic mixtures of extractants. Simple bulk statistical thermodynamics model, in which we incorporated some of the well-established concepts in colloidal chemistry provided a soft-matter approach for the calculation of actual engineering-scale processes. Were have expanded a classical simple equilibria approach to broader, more intuitive polydisperse aggregates formation that underlines the liquid-liquid extraction. The key finding can be presented as a current opinion or newly-proposed paradigm: at equilibrium, many aggregates completely different in composition but similar in free energy coexist. With obtained polydispersity, we were equipped with a tool to study a more 'global' behavior of liquid-liquid extraction. This urged us to pass our considerations of historical extraction isotherms to extraction 'maps'. Great care was devoted to the study of synergy since it is a 60-year old ongoing question in the separation industrial and science community. To our best knowledge, the first quantitative rationalization total synergistic extraction was proposed within this thesis. Underlying effects of enthalpy and entropy control on the organic phase structuring were decoupled and studied in detail. Hopefully, this thesis demonstrated the importance of mesoscopic modelling to assist both chemists and chemical engineers in practical examples
Arriagada, Strodthoff Paula. „Optimization of biocatalysis of chlorophyllase in neat organic solvent media“. Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81263.
Der volle Inhalt der QuelleNandi, Prabir. „Solution properties of sodium carboxymethylcellulose in acetonitrile-water mixed solvent media“. Thesis, University of North Bengal, 2009. http://hdl.handle.net/123456789/1350.
Der volle Inhalt der QuelleGurung, Bhoj Bahadur. „Physico-chemical studies on the solute-solvent interactions of some electrolytes in various single and binary solvent media“. Thesis, University of North Bengal, 2006. http://hdl.handle.net/123456789/747.
Der volle Inhalt der QuelleBrahman, Dhiraj. „PHYSICO-CHEMICAL STUDIES OF SOME SCHIFF BASE COMPLEXES OF TRANSITION METALS IN PURE AND MIXED SOLVENT MEDIA“. Thesis, University of North Bengal, 2013. http://hdl.handle.net/123456789/973.
Der volle Inhalt der QuelleBücher zum Thema "Solvent media"
Park, Sang Joon. Solvent extraction of nickel from nitrate media by DI(2-ethylhexyl) phosphoric acid under high loading conditions. Ann Arbor, MI: UMI Dissertation Services, 1996.
Den vollen Inhalt der Quelle findenGoddard, Richard Douglas. Immobilised lipases as biocatalysts in non-conventional media: Application of near-critical carbon dioxide as a solvent. Birmingham: University of Birmingham, 1999.
Den vollen Inhalt der Quelle findenJ, Adams Dave, Dyson Paul J und Tavener Stewart J, Hrsg. Chemistry in alternative reaction media. Chichester, West Sussex, England: J. Wiley, 2004.
Den vollen Inhalt der Quelle findenStark, Rebecca. Creative ventures: The media. Hawthorne, N.J: Educational Impressions, 1987.
Den vollen Inhalt der Quelle finden1961-, Abraham Martin A., Moens Luc 1957-, American Chemical Society. Division of Industrial and Engineering Chemistry und American Chemical Society Meeting, Hrsg. Clean solvents: Alternative media for chemical reactions and processing. Washington, DC: American Chemical Society, 2002.
Den vollen Inhalt der Quelle findenKoichi, Mikami, Hrsg. Green reaction media in organic synthesis. Oxford: Blackwell Pub., 2005.
Den vollen Inhalt der Quelle findenDense chlorinated solvents in porous and fractured media: Model experiments. Chelsea, MI: Lewis Publishers, 1988.
Den vollen Inhalt der Quelle findenBunzel, Tom. Solving the powerpoint predicament: Using digital media for effective communication. Indianapolis, Ind: QUE, 2007.
Den vollen Inhalt der Quelle findenSolving the powerpoint predicament: Using digital media for effective communication. Indianapolis, Ind: QUE, 2007.
Den vollen Inhalt der Quelle findenBunzel, Tom. Solving the powerpoint predicament: Using digital media for effective communication. Indianapolis, Ind: QUE, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Solvent media"
Schroeder, Jörg, und Jürgen Troe. „Pressure Dependence of Solvent Effects in Elementary Reactions in Dense Media“. In Reaction Dynamics in Clusters and Condensed Phases, 361–81. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0786-0_25.
Der volle Inhalt der QuelleKäiväräinen, Alex I. „Interactions between Macromolecules of Different Types and Proteins and Cells in Aqueous Media“. In Solvent-Dependent Flexibility of Proteins and Principles of Their Function, 238–53. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5197-6_8.
Der volle Inhalt der QuelleEnsor, Dale D., und Kenneth L. Nash. „Separation of Americium from Europium by Solvent Extraction from Aqueous Phosphonate Media“. In Separations of f Elements, 143–52. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1406-4_10.
Der volle Inhalt der QuelleKäiväräinen, Alex I. „Principles and Implications of the Dynamic Model of Behavior of Proteins in Aqueous Media“. In Solvent-Dependent Flexibility of Proteins and Principles of Their Function, 14–26. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5197-6_2.
Der volle Inhalt der QuelleThakore, Ruchita R., und Balaram S. Takale. „CHAPTER 13. Environmentally Benign Media: Water, AOS, and Water/Organic Solvent Azeotropic Mixtures“. In Sustainable Organic Synthesis, 362–90. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164842-00362.
Der volle Inhalt der QuelleLagunas, M. Cristina, William R. Pitner, Jan-Albert van den Berg und Kenneth R. Seddon. „Solvent-Solute Interactions in Ionic Liquid Media: Electrochemical Studies of the Ferricenium-Ferrocene Couple“. In ACS Symposium Series, 421–38. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0856.ch034.
Der volle Inhalt der QuelleFoster, Neil R., und Roderick Sih. „Development of a Novel Precipitation Technique for the Production of Highly Respirable Powders: The Atomized Rapid Injection for Solvent Extraction Process“. In Gas-Expanded Liquids and Near-Critical Media, 309–47. Washington, DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1006.ch017.
Der volle Inhalt der QuelleYang, Qiaolin, und Dionysios D. Dionysiou. „Room Temperature Ionic Liquids as Solvent Media for the Photolytic Degradation of Environmentally Important Organic Contaminants“. In ACS Symposium Series, 182–98. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0902.ch015.
Der volle Inhalt der QuelleSousa, C. S., M. Nascimento, I. O. C. Masson und O. G. C. Cunha. „Modeling of Cobalt and Nickel Extraction by Solvent Extraction in Sulfate Media with D2EHPA in Isoparaffin (17/21)“. In Supplemental Proceedings, 309–16. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062111.ch33.
Der volle Inhalt der Quellede los Ríos, A. P., F. J. Hernández-Fernández, L. J. Lozano und C. Godínez. „Biocatalytic Reactions in Ionic Liquid Media“. In Green Solvents II, 169–88. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2891-2_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solvent media"
Wilson, James A., Jonathan D. Wehking, Mark Trautman, Mark E. Blue und Ranganathan Kumar. „Modeling Phase Change Heat Transfer of Liquid/Vapor Systems in Free and Porous Media“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53232.
Der volle Inhalt der QuelleScherer, P. O. J. „Noise induced intramolecular electron transfer processes in polar media.“ In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.fc4.
Der volle Inhalt der QuelleSmirnov, Igor, Ahmed Hamdy Aly Harb, Igor Balantsev und Maria Karavan. „Yttrium-90 separation in carbonate media by solvent extraction“. In RAD Conference. RAD Centre, 2021. http://dx.doi.org/10.21175/rad.abstr.book.2021.33.4.
Der volle Inhalt der QuelleSmirnov, Igor, Ahmed Harb, Igor Balantsev und Maria Karavan. „YTTRIUM-90 SEPARATION IN CARBONATE MEDIA BY SOLVENT EXTRACTION“. In RAD Conference. RAD Centre, 2021. http://dx.doi.org/10.21175/radproc.2021.06.
Der volle Inhalt der QuelleTelmadarreie, Ali, Christopher Johnsen und Steven L. Bryant. „A Novel Hybrid Solvent-Based Complex Fluid for Enhanced Heavy Oil Recovery“. In SPE Western Regional Meeting. SPE, 2021. http://dx.doi.org/10.2118/200857-ms.
Der volle Inhalt der QuelleFarzaneh, Seyed Amir, Riyaz Kharrat und Mohammad Hossein Ghazanfari. „Experimental Investigation of Factors Affecting Miscible Two-Phase Flow in Fractured and Non-Fractured Micromodels“. In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62095.
Der volle Inhalt der QuelleBrattekås, B., G. Ersland und R. S. Seright. „Solvent Leakoff During Gel Placement in Fractures: Extension to Oil-Saturated Porous Media“. In SPE Improved Oil Recovery Conference. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/190256-ms.
Der volle Inhalt der QuelleMullins, H. „167. Performance of Respirators Made from Electrostatic Media after Exposure to Solvent Vapors“. In AIHce 2001. AIHA, 2001. http://dx.doi.org/10.3320/1.2765683.
Der volle Inhalt der QuelleTaheri-Shakib, J., E. Kazemzadeh, M. Rajabi-Kochi, H. Naderi, Y. Salimidelshad und A. Shekarifard. „The Experimental Study for Elimination of Asphaltene Precipitation in Porous Media in Solvent Injection Treatment: Based on the Appropriate Solvent Selection Criteria“. In Saint Petersburg 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800146.
Der volle Inhalt der QuelleBayestehparvin, Bita, und S. M. Farouq Ali. „Nonequilibrium Phase Behavior Plays a Role in Solvent-Aided Processes“. In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210016-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Solvent media"
Reboul, S., T. Peters und F. Fondeur. CHARACTERIZATION OF SOLIDS IN FOULED MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) PREFILTER/COALESCER MEDIA. Office of Scientific and Technical Information (OSTI), Juli 2014. http://dx.doi.org/10.2172/1146963.
Der volle Inhalt der QuelleBonnesen, P. V., D. J. Presley, T. J. Haverlock und B. A. Moyer. Removal of technetium from alkaline nuclear-waste media by a solvent-extraction process using crown ethers. Office of Scientific and Technical Information (OSTI), Juli 1995. http://dx.doi.org/10.2172/86950.
Der volle Inhalt der QuelleFondeur, F. Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in October 2014. Office of Scientific and Technical Information (OSTI), März 2016. http://dx.doi.org/10.2172/1245745.
Der volle Inhalt der QuelleFondeur, F. F. Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in May and October 2014. Office of Scientific and Technical Information (OSTI), Oktober 2015. http://dx.doi.org/10.2172/1225181.
Der volle Inhalt der QuelleDelmau, Latitia H., David T. Hobbs und Kenneth N. Raymond. Combined Extraction of Cesium, Strontium, and Actinides from Alkaline Media : An Extension of the Caustic-Side Solvent Extraction (CSSX) Process Technology. Office of Scientific and Technical Information (OSTI), Juni 2002. http://dx.doi.org/10.2172/834979.
Der volle Inhalt der QuelleDelmau, Laetitia H., David T. Hobbs und Kenneth N. Raymond. Combined Extraction of Cesium, Strontium, and Actinides from Alkaline Media : An Extension of the Caustic-Side Solvent Extraction (CSSX) Process Technology. Office of Scientific and Technical Information (OSTI), Juni 2003. http://dx.doi.org/10.2172/834980.
Der volle Inhalt der QuelleKenneth Raymond. Combined Extraction of Cesium, Strontium, and Actinides from Alkaline Media: An Extension of the Caustic-Side Solvent Extraction (CSSX) Process Technology. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/836576.
Der volle Inhalt der QuelleDelmau, Laetitia H., David T. Hobbs und Kenneth N. Raymond. Combined Extraction of Cesium, Strontium, and Actinides from Alkaline Media : An Extension of the Caustic-Side Solvent Extraction (CSSX) Process Technology. Office of Scientific and Technical Information (OSTI), Juni 2004. http://dx.doi.org/10.2172/839080.
Der volle Inhalt der QuelleFondeur, F. F. Characterization of Solids Deposited on the Modular Caustic-Side Solvent Extraction Unit (MCU) Strip Effluent (SE) Coalescer Media Removed in April 2015. Office of Scientific and Technical Information (OSTI), Juni 2016. http://dx.doi.org/10.2172/1262319.
Der volle Inhalt der QuelleBentz, Dale P., und Nicos S. Martys. A stokes permeability solver for three-dimensional porous media. Gaithersburg, MD: National Institute of Standards and Technology, 2007. http://dx.doi.org/10.6028/nist.ir.7416.
Der volle Inhalt der Quelle