Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solvable approximation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solvable approximation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solvable approximation"
Hopkins, William E., und Wing Shing Wong. „Approximation of almost solvable bilinear systems“. Systems & Control Letters 6, Nr. 2 (Juli 1985): 131–40. http://dx.doi.org/10.1016/0167-6911(85)90011-8.
Der volle Inhalt der QuelleValtancoli, P. „Exactly solvable f(R) inflation“. International Journal of Modern Physics D 28, Nr. 07 (Mai 2019): 1950087. http://dx.doi.org/10.1142/s0218271819500871.
Der volle Inhalt der QuelleLemm, J. C. „Inhomogeneous Random Phase Approximation: A Solvable Model“. Annals of Physics 244, Nr. 1 (November 1995): 201–38. http://dx.doi.org/10.1006/aphy.1995.1111.
Der volle Inhalt der QuelleShi, Ronggang, und Barak Weiss. „Invariant measures for solvable groups and Diophantine approximation“. Israel Journal of Mathematics 219, Nr. 1 (April 2017): 479–505. http://dx.doi.org/10.1007/s11856-017-1472-y.
Der volle Inhalt der QuelleCo’, Giampaolo, und Stefano De Leo. „Hartree–Fock and random phase approximation theories in a many-fermion solvable model“. Modern Physics Letters A 30, Nr. 36 (03.11.2015): 1550196. http://dx.doi.org/10.1142/s0217732315501965.
Der volle Inhalt der QuelleSOLENOV, DMITRY, und VLADIMIR PRIVMAN. „EVALUATION OF DECOHERENCE FOR QUANTUM COMPUTING ARCHITECTURES: QUBIT SYSTEM SUBJECT TO TIME-DEPENDENT CONTROL“. International Journal of Modern Physics B 20, Nr. 11n13 (20.05.2006): 1476–95. http://dx.doi.org/10.1142/s0217979206034066.
Der volle Inhalt der QuelleMota, V., und E. S. Hern�ndez. „A solvable version of the collisional random phase approximation“. Zeitschrift f�r Physik A Atomic Nuclei 328, Nr. 2 (Juni 1987): 177–87. http://dx.doi.org/10.1007/bf01290660.
Der volle Inhalt der QuelleKudryashov, Vladimir V., und Yulian V. Vanne. „Explicit summation of the constituent WKB series and new approximate wave functions“. Journal of Applied Mathematics 2, Nr. 6 (2002): 265–75. http://dx.doi.org/10.1155/s1110757x02112046.
Der volle Inhalt der QuelleSollich, Peter, und Anason Halees. „Learning Curves for Gaussian Process Regression: Approximations and Bounds“. Neural Computation 14, Nr. 6 (01.06.2002): 1393–428. http://dx.doi.org/10.1162/089976602753712990.
Der volle Inhalt der QuelleShen, Jinrong, Wei Liu, Baiyu Wang und Xiangyang Peng. „The Centrosymmetric Matrices of Constrained Inverse Eigenproblem and Optimal Approximation Problem“. Mathematical Problems in Engineering 2020 (10.03.2020): 1–8. http://dx.doi.org/10.1155/2020/4590354.
Der volle Inhalt der QuelleDissertationen zum Thema "Solvable approximation"
Manríquez, Peñafiel Ronald. „Local approximation by linear systems and Almost-Riemannian Structures on Lie groups and Continuation method in rolling problem with obstacles“. Electronic Thesis or Diss., université Paris-Saclay, 2022. https://theses.hal.science/tel-03716186.
Der volle Inhalt der QuelleThe aim of this thesis is to study two topics in sub-Riemannian geometry. On the one hand, the local approximation of an almost-Riemannian structure at singular points, and on the other hand, the kinematic system of a 2-dimensional manifold rolling (without twisting or slipping) on the Euclidean plane with forbidden regions. A n-dimensional almost-Riemannian structure can be defined locally by n vector fields satisfying the Lie algebra rank condition, playing the role of an orthonormal frame. The set of points where these vector fields are colinear is called the singular set (Z). At tangency points, i.e., points where the linear span of the vector fields is equal to the tangent space of Z, the nilpotent approximation can be replaced by the solvable one. In this thesis, under generic conditions, we state the order of approximation of the original distance by d ̃ (the distance induced by the solvable approximation), and we prove that d ̃ is closer than the distance induced by the nilpotent approximation to the original distance. Regarding the structure of the approximating system, the Lie algebra generated by this new family of vector fields is finite-dimensional and solvable (in the generic case). Moreover, the solvable approximation is equivalent to a linear ARS on a homogeneous space or a Lie group. On the other hand, nonholonomic systems have attracted the attention of many authors from different disciplines for their varied applications, mainly in robotics. The rolling-body problem (without slipping or spinning) of a 2-dimensional Riemannian manifold on another one can be written as a nonholonomic system. Many methods, algorithms, and techniques have been developed to solve it. A numerical implementation of the Continuation Method to solve the problem in which a convex surface rolls on the Euclidean plane with forbidden regions (or obstacles) without slipping or spinning is performed. Several examples are illustrated
Bücher zum Thema "Solvable approximation"
Research Institute for Advanced Computer Science (U.S.), Hrsg. Explicitly solvable complex Chebyshev approximation problems related to sine polynomials. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1989.
Den vollen Inhalt der Quelle findenChristensen, Jens Gerlach. Trends in harmonic analysis and its applications: AMS special session on harmonic analysis and its applications : March 29-30, 2014, University of Maryland, Baltimore County, Baltimore, MD. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenCombinatorics and Random Matrix Theory. American Mathematical Society, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Solvable approximation"
Lobbe, Alexander. „Deep Learning for the Benes Filter“. In Mathematics of Planet Earth, 195–210. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18988-3_12.
Der volle Inhalt der QuelleSikorski, Krzysztof A. „Fixed Points- Noncontractive Functions“. In Optimal Solution of Nonlinear Equations. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195106909.003.0007.
Der volle Inhalt der QuelleMussardo, Giuseppe. „Approximate Solutions“. In Statistical Field Theory, 106–58. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198788102.003.0003.
Der volle Inhalt der QuelleRodriguez, Ricardo, Ivo Bukovsky und Noriyasu Homma. „Potentials of Quadratic Neural Unit for Applications“. In Advances in Abstract Intelligence and Soft Computing, 343–54. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2651-5.ch023.
Der volle Inhalt der QuelleTuck, Adrian F. „Non-Equilibrium Statistical Mechanics“. In Atmospheric Turbulence. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780199236534.003.0010.
Der volle Inhalt der QuelleKalyuzhnyi, Yu V., und P. T. Cummings. „6 Equations of state from analytically solvable integral equation approximations“. In Equations of State for Fluids and Fluid Mixtures, 169–254. Elsevier, 2000. http://dx.doi.org/10.1016/s1874-5644(00)80017-x.
Der volle Inhalt der QuelleJuan Peña, José, Jesús Morales und Jesús García-Ravelo. „Perspective Chapter: Relativistic Treatment of Spinless Particles Subject to a Class of Multiparameter Exponential-Type Potentials“. In Schrödinger Equation - Fundamentals Aspects and Potential Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.112184.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solvable approximation"
Todorov, Emanuel. „Eigenfunction approximation methods for linearly-solvable optimal control problems“. In 2009 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE, 2009. http://dx.doi.org/10.1109/adprl.2009.4927540.
Der volle Inhalt der QuellePedram, Ali Reza, und Takashi Tanaka. „Linearly-Solvable Mean-Field Approximation for Multi-Team Road Traffic Games“. In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029579.
Der volle Inhalt der QuelleElperin, Tov, Andrew Fominykh und Boris Krasovitov. „Modeling of Simultaneous Gas Absorption and Evaporation of Large Droplet“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79924.
Der volle Inhalt der QuelleElperin, Tov, Andrew Fominykh und Boris Krasovitov. „Simultaneous Heat and Mass Transfer During Evaporation/Condensation on the Surface of a Stagnant Droplet in the Presence of Inert Admixtures Containing Non-Condensable Solvable Gas“. In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72493.
Der volle Inhalt der QuelleHerkenrath, Maike, Till Fluschnik, Francesco Grothe und Leon Kellerhals. „Placing Green Bridges Optimally, with Habitats Inducing Cycles“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/531.
Der volle Inhalt der QuelleSingh, Rituraj, und Krishna M. Singh. „Iterative Solvers for Meshless Petrov Galerkin (MLPG) Method Applied to Large Scale Engineering Problems Challenges“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53343.
Der volle Inhalt der QuelleZhong, Mingyuan, und Emanuel Todorov. „Moving least-squares approximations for linearly-solvable MDP“. In 2011 Ieee Symposium On Adaptive Dynamic Programming And Reinforcement Learning. IEEE, 2011. http://dx.doi.org/10.1109/adprl.2011.5967383.
Der volle Inhalt der QuelleManko, D. J., und W. L. Whittaker. „Inverse Dynamic Models Used for Force Control of Compliant, Closed-Chain Mechanisms“. In ASME 1989 Design Technical Conferences. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/detc1989-0106.
Der volle Inhalt der QuelleWilde, Douglass J. „Monotonicity Analysis of Taguchi’s Robust Circuit Design Problem“. In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0052.
Der volle Inhalt der QuelleXiros, Nikolaos I. „Investigation of a Nonlinear Control Model for Marine Propulsion Power-Plants“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63797.
Der volle Inhalt der Quelle