Zeitschriftenartikel zum Thema „Solidification shrinkage“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Solidification shrinkage" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Zhu, Li Guang, Jian Chen, Ying Xu, Cai Jun Zhang und Shuo Ming Wang. „Simulation on Steel Solidification and its Shrinkage in Mould of FTSC Slab“. Advanced Materials Research 472-475 (Februar 2012): 2018–23. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.2018.
Der volle Inhalt der QuelleRashid, Abira. „Optimization of Shrinkage Porosity in Grinding Media Balls by Casting Design Modification and Simulation Technique“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VIII (15.08.2021): 344–53. http://dx.doi.org/10.22214/ijraset.2021.37352.
Der volle Inhalt der QuelleHe, Bin Feng, und Zhu Qing Zhao. „Numerical Simulation of Chilled Cast Iron Camshaft in Sand Casting Process“. Applied Mechanics and Materials 44-47 (Dezember 2010): 117–21. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.117.
Der volle Inhalt der QuelleBoonmee, Sarum, und Letrit Chuencharoen. „The Study of Solidification Behavior in Cast Irons Using the Linear Displacement Method“. Solid State Phenomena 263 (September 2017): 77–81. http://dx.doi.org/10.4028/www.scientific.net/ssp.263.77.
Der volle Inhalt der QuelleXiao, Feng, Renhui Yang, Liang Fang und Chi Zhang. „Solidification shrinkage of Ni–Cr alloys“. Materials Science and Engineering: B 132, Nr. 1-2 (Juli 2006): 193–96. http://dx.doi.org/10.1016/j.mseb.2006.02.019.
Der volle Inhalt der QuelleGhomy, M. Emamy, und J. Campbell. „Solidification shrinkage in metal matrix composites“. Cast Metals 8, Nr. 2 (Juli 1995): 115–22. http://dx.doi.org/10.1080/09534962.1995.11819199.
Der volle Inhalt der QuelleWable, Girish S., Srinivas Chada, Bryan Neal und Raymond A. Fournelle. „Solidification shrinkage defects in electronic solders“. JOM 57, Nr. 6 (Juni 2005): 38–42. http://dx.doi.org/10.1007/s11837-005-0134-x.
Der volle Inhalt der QuelleKorojy, B., L. Ekbom und H. Fredriksson. „Microsegregation and Solidification Shrinkage of Copper-Lead Base Alloys“. Advances in Materials Science and Engineering 2009 (2009): 1–9. http://dx.doi.org/10.1155/2009/627937.
Der volle Inhalt der QuelleLiu, Jin Xiang, Ri Dong Liao und Zheng Xi Zuo. „Numerical Study on Solidification Process and Shrinkage Porosity for Engine Block Casting“. Applied Mechanics and Materials 37-38 (November 2010): 753–56. http://dx.doi.org/10.4028/www.scientific.net/amm.37-38.753.
Der volle Inhalt der QuelleXie, Shi Kun, Rong Xi Yi, Zhi Gao, Xiang Xia, Cha Gen Hu und Xiu Yan Guo. „Effect of Rare Earth Ce on Casting Properties of Al-4.5Cu Alloy“. Advanced Materials Research 136 (Oktober 2010): 1–4. http://dx.doi.org/10.4028/www.scientific.net/amr.136.1.
Der volle Inhalt der QuelleHou, Hua, Guo Wei Zhang, Hong Kui Mao und Jun Cheng. „A New Prediction Way to Shrinkage Cavity Formation for Ductile Iron Castings“. Materials Science Forum 575-578 (April 2008): 127–34. http://dx.doi.org/10.4028/www.scientific.net/msf.575-578.127.
Der volle Inhalt der QuelleBurbelko, Andriy A., Daniel Gurgul, Wojciech Kapturkiewicz und Edward Guzik. „Modelling of the Density Changes of Nodular Cast Iron During Solidification by CA-FD Method“. Materials Science Forum 790-791 (Mai 2014): 140–45. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.140.
Der volle Inhalt der QuelleFUKUMOTO, Shigeo, und Yuma YOSHIOKA. „Estimation of Critical Strain Caused by Solidification Shrinkage during Weld Solidification“. QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 38, Nr. 4 (2020): 291–96. http://dx.doi.org/10.2207/qjjws.38.291.
Der volle Inhalt der QuelleKorojy, B., und H. Fredriksson. „On solidification and shrinkage of brass alloys“. International Journal of Cast Metals Research 22, Nr. 1-4 (August 2009): 183–86. http://dx.doi.org/10.1179/136404609x367623.
Der volle Inhalt der QuelleSun, Dawei, und Suresh V. Garimella. „Numerical and Experimental Investigation of Solidification Shrinkage“. Numerical Heat Transfer, Part A: Applications 52, Nr. 2 (05.07.2007): 145–62. http://dx.doi.org/10.1080/10407780601115079.
Der volle Inhalt der QuelleSulfredge, C. David, Louis C. Chow und Kaveh A. Tagavi. „INITIATION AND GROWTH OF SOLIDIFICATION SHRINKAGE VOIDS“. Annual Review of Heat Transfer 10, Nr. 10 (1999): 221–78. http://dx.doi.org/10.1615/annualrevheattransfer.v10.80.
Der volle Inhalt der QuelleChemezov, Denis Alexandrovich. „SHRINKAGE OF SOME METAL ALLOYS AFTER SOLIDIFICATION“. Theoretical & Applied Science 50, Nr. 06 (30.06.2017): 87–89. http://dx.doi.org/10.15863/tas.2017.06.50.10.
Der volle Inhalt der QuelleZheng, Hong Liang, Yu Cheng Sun, Ning Zhang, Kai Zhang und Xue Lei Tian. „Shrinkage Porosity Simulation of Spheroidal Graphite Iron Castings Based on Macro-Micro Models“. Materials Science Forum 689 (Juni 2011): 190–97. http://dx.doi.org/10.4028/www.scientific.net/msf.689.190.
Der volle Inhalt der QuelleFecko, D., I. Vasková, Ľ. Eperješi und M. Závodný. „Usage of Connor Inlets to Eliminate Shrinkage“. Archives of Foundry Engineering 12, Nr. 3 (01.09.2012): 25–28. http://dx.doi.org/10.2478/v10266-012-0076-0.
Der volle Inhalt der QuelleSowa, Leszek, Tomasz Skrzypczak und Paweł Kwiatoń. „Computer evaluation of the influence of liquid metal movements on defects formation in the casting“. MATEC Web of Conferences 254 (2019): 02017. http://dx.doi.org/10.1051/matecconf/201925402017.
Der volle Inhalt der QuelleElmquist, Lennart, Kaisu Soivio und Attila Diószegi. „Cast Iron Solidification Structure and how it is Related to Defect Formation“. Materials Science Forum 790-791 (Mai 2014): 441–46. http://dx.doi.org/10.4028/www.scientific.net/msf.790-791.441.
Der volle Inhalt der QuelleGao, Cun Zhen, Di Xin Yang, Jing Pei Xie, Ai Qin Wang und Wen Yan Wang. „Casting Process Optimization for Large Bearing Bush of Zinc-Base Alloy“. Materials Science Forum 704-705 (Dezember 2011): 40–44. http://dx.doi.org/10.4028/www.scientific.net/msf.704-705.40.
Der volle Inhalt der QuelleHe, Bin Feng. „Application of View Cast Software in Foundry Technique Designing“. Advanced Materials Research 538-541 (Juni 2012): 572–75. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.572.
Der volle Inhalt der QuelleLiu, Zi Kang, Min Luo, Da Quan Li, Long Fei Li und Jian Feng. „Effects of Process Parameters on Shrinkage Porosity in 357 Semi-Solid Die Casting Parts“. Materials Science Forum 993 (Mai 2020): 166–71. http://dx.doi.org/10.4028/www.scientific.net/msf.993.166.
Der volle Inhalt der QuelleMonde, Aniket D., Anirban Bhattacharya und Prodyut R. Chakraborty. „Shrinkage induced flow and Free surface evolution during solidification of pure metal“. E3S Web of Conferences 128 (2019): 06011. http://dx.doi.org/10.1051/e3sconf/201912806011.
Der volle Inhalt der QuelleYang, Da Chun. „Foundry Technology of the Pressure Board Steel Casting Based on Proportional Solidification Theory“. Advanced Materials Research 314-316 (August 2011): 691–94. http://dx.doi.org/10.4028/www.scientific.net/amr.314-316.691.
Der volle Inhalt der QuelleHetmaniok, Edyta, Damian Słota und Adam Zielonka. „Solution of the direct alloy solidification problem including the phenomenon of material shrinkage“. Thermal Science 21, Nr. 1 Part A (2017): 105–15. http://dx.doi.org/10.2298/tsci160405239h.
Der volle Inhalt der QuelleLi, Qing Chun, Bo Wang, Xu Dong Yue, Guang Can Jin und Guo Wei Chang. „Research of Shrinkage Process for Fe-0.18%C Cast Ingot during Solidification“. Advanced Materials Research 299-300 (Juli 2011): 350–54. http://dx.doi.org/10.4028/www.scientific.net/amr.299-300.350.
Der volle Inhalt der QuelleZhang, Ying, Guo Rui Jia, Xian Jiao Xie, Shui Sheng Xie, Jin Yu He, De Fu Li, Wen Sheng Sun und Mao Peng Geng. „Numerical Simulation and Optimization in Solidification of Zinc Alloy“. Advanced Materials Research 287-290 (Juli 2011): 2902–5. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.2902.
Der volle Inhalt der QuelleWeiß, K., und Christoph Honsel. „New Algorithm to Calculate Liquid – Solid Shrinkage and Graphite Expansion“. Materials Science Forum 508 (März 2006): 509–14. http://dx.doi.org/10.4028/www.scientific.net/msf.508.509.
Der volle Inhalt der QuelleKhalajzadeh, Vahid, und Christoph Beckermann. „Simulation of Shrinkage Porosity Formation During Alloy Solidification“. Metallurgical and Materials Transactions A 51, Nr. 5 (10.03.2020): 2239–54. http://dx.doi.org/10.1007/s11661-020-05699-z.
Der volle Inhalt der QuelleSobolev, V. V. „Formation of shrinkage porosity in solidification of granules“. Soviet Powder Metallurgy and Metal Ceramics 30, Nr. 2 (Februar 1991): 91–93. http://dx.doi.org/10.1007/bf00797276.
Der volle Inhalt der QuelleChen, Shuying, Shengnan Ma, Zhilin Chen, Xudong Yue und Guowei Chang. „Casting Defects in Transition Layer of Cu/Al Composite Castings Prepared Using Pouring Aluminum Method and Their Formation Mechanism“. High Temperature Materials and Processes 38, Nr. 2019 (25.02.2019): 199–206. http://dx.doi.org/10.1515/htmp-2017-0124.
Der volle Inhalt der QuelleKwon, Hong Kyu, und Kwang Kyu Seo. „Simulation Study on HPDC Process for Automobile Part with Aluminum Alloy“. Materials Science Forum 761 (Juli 2013): 79–82. http://dx.doi.org/10.4028/www.scientific.net/msf.761.79.
Der volle Inhalt der QuelleKim, Sung Bin, Young Hoon Yim, Joong Mook Yoon und Doru Michael Ştefănescu. „Prediction of Shrinkage Defects in Iron Castings Using a Microporosity Model“. Materials Science Forum 925 (Juni 2018): 411–18. http://dx.doi.org/10.4028/www.scientific.net/msf.925.411.
Der volle Inhalt der QuelleWang, Hai Tao, Hua Shun Yu und Hui Zhong Xu. „Effects and Mechanism of Titanium Modification on Shrinkage Cavity and Porosity of Cast Steel“. Applied Mechanics and Materials 34-35 (Oktober 2010): 1687–91. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.1687.
Der volle Inhalt der QuelleHe, Bin Feng. „Foundry Technique Designing of the Nodular Cast Iron Casting“. Advanced Materials Research 1004-1005 (August 2014): 1162–65. http://dx.doi.org/10.4028/www.scientific.net/amr.1004-1005.1162.
Der volle Inhalt der QuelleSkrzypczak, Tomasz, Ewa Węgrzyn-Skrzypczak und Leszek Sowa. „Investigation of the impact of geometry of the riser on the location and shape of shrinkage cavity“. MATEC Web of Conferences 254 (2019): 02010. http://dx.doi.org/10.1051/matecconf/201925402010.
Der volle Inhalt der QuelleYu, J. K., Q. Yan und Pin Yang Fang. „Solidification of Aluminum Infiltrated Composites“. Materials Science Forum 475-479 (Januar 2005): 901–4. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.901.
Der volle Inhalt der QuelleHou, Hua, Hong Hao Ge, Yu Hong Zhao und Wei Ming Yang. „A New Numerical Simulation Model for Shrinkage Defect during Squeeze Casting Solidification Process“. Advanced Materials Research 641-642 (Januar 2013): 309–14. http://dx.doi.org/10.4028/www.scientific.net/amr.641-642.309.
Der volle Inhalt der QuelleWang, Hai Tao, Hui Zhong Xu und Hua Shun Yu. „Effects and Mechanism of Titanium on Cast Fluidity of ZG45“. Advanced Materials Research 146-147 (Oktober 2010): 1243–46. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1243.
Der volle Inhalt der QuelleZhang, C., Y. Bao, M. Wang und L. Zhang. „Shrinkage Porosity Criterion and Its Application to A 5.5 Ton Steel Ingot“. Archives of Foundry Engineering 16, Nr. 2 (01.06.2016): 27–32. http://dx.doi.org/10.1515/afe-2016-0021.
Der volle Inhalt der QuelleWang, Dong Lei, Zhi Yi Xie, Wen Xu Sun und Yong Huang. „Solidification Simulation of Melt-Cast Explosive under Pressurization“. Materials Science Forum 704-705 (Dezember 2011): 71–75. http://dx.doi.org/10.4028/www.scientific.net/msf.704-705.71.
Der volle Inhalt der QuelleAnjos, Vítor, und Carlos A. Silva Ribeiro. „Maximization and Control of Nodular Iron Melt’s Self-Feeding Characteristics to Minimize Shrinkage“. Materials Science Forum 925 (Juni 2018): 147–54. http://dx.doi.org/10.4028/www.scientific.net/msf.925.147.
Der volle Inhalt der QuelleZhao, Si Cong, Er Jun Guo und Li Ping Wang. „Research Materials of Chills Effect on the Solidification Process of ZM5 Shell“. Advanced Materials Research 399-401 (November 2011): 1820–25. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.1820.
Der volle Inhalt der QuelleNatsume, Yukinobu. „Numerical Simulation of Macrosegregation Formed Due to Solidification Shrinkage and Bridging of Solidification Structures“. Tetsu-to-Hagane 103, Nr. 12 (2017): 738–46. http://dx.doi.org/10.2355/tetsutohagane.tetsu-2017-062.
Der volle Inhalt der QuelleYang, Hai Bo, Guang Liang Wang, Xue Wen Chen und De Ying Xu. „The Numerical Simulation and Optimization in Squeeze Casting of the Air Conditioning Compressor Front Cover“. Advanced Materials Research 803 (September 2013): 317–20. http://dx.doi.org/10.4028/www.scientific.net/amr.803.317.
Der volle Inhalt der QuelleLiang, Xiang Feng, Yu Tao Zhao, Zhen Li Zuo und Zhi Hong Jia. „Manufacture and Analysis of Directional Solidification Organization of CMSX-6 Nickel-Base Superalloy“. Key Engineering Materials 575-576 (September 2013): 394–97. http://dx.doi.org/10.4028/www.scientific.net/kem.575-576.394.
Der volle Inhalt der QuelleMahardika, Muslim, und A. Syamsudin. „Prediction of Shrinkage Porosity in Femoral Stem of Titanium Investment Casting“. Archives of Foundry Engineering 16, Nr. 4 (01.12.2016): 157–62. http://dx.doi.org/10.1515/afe-2016-0102.
Der volle Inhalt der QuelleZhou, Yan Jun, Ke Xing Song, Yan Min Zhang und Xiu Hua Guo. „Numerical Simulation Analysis on Shrinkage and Porosity of ZL101A Alloy Mechanism Box“. Materials Science Forum 704-705 (Dezember 2011): 28–32. http://dx.doi.org/10.4028/www.scientific.net/msf.704-705.28.
Der volle Inhalt der Quelle