Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solidification shrinkage“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solidification shrinkage" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solidification shrinkage"
Zhu, Li Guang, Jian Chen, Ying Xu, Cai Jun Zhang und Shuo Ming Wang. „Simulation on Steel Solidification and its Shrinkage in Mould of FTSC Slab“. Advanced Materials Research 472-475 (Februar 2012): 2018–23. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.2018.
Der volle Inhalt der QuelleRashid, Abira. „Optimization of Shrinkage Porosity in Grinding Media Balls by Casting Design Modification and Simulation Technique“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VIII (15.08.2021): 344–53. http://dx.doi.org/10.22214/ijraset.2021.37352.
Der volle Inhalt der QuelleHe, Bin Feng, und Zhu Qing Zhao. „Numerical Simulation of Chilled Cast Iron Camshaft in Sand Casting Process“. Applied Mechanics and Materials 44-47 (Dezember 2010): 117–21. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.117.
Der volle Inhalt der QuelleBoonmee, Sarum, und Letrit Chuencharoen. „The Study of Solidification Behavior in Cast Irons Using the Linear Displacement Method“. Solid State Phenomena 263 (September 2017): 77–81. http://dx.doi.org/10.4028/www.scientific.net/ssp.263.77.
Der volle Inhalt der QuelleXiao, Feng, Renhui Yang, Liang Fang und Chi Zhang. „Solidification shrinkage of Ni–Cr alloys“. Materials Science and Engineering: B 132, Nr. 1-2 (Juli 2006): 193–96. http://dx.doi.org/10.1016/j.mseb.2006.02.019.
Der volle Inhalt der QuelleGhomy, M. Emamy, und J. Campbell. „Solidification shrinkage in metal matrix composites“. Cast Metals 8, Nr. 2 (Juli 1995): 115–22. http://dx.doi.org/10.1080/09534962.1995.11819199.
Der volle Inhalt der QuelleWable, Girish S., Srinivas Chada, Bryan Neal und Raymond A. Fournelle. „Solidification shrinkage defects in electronic solders“. JOM 57, Nr. 6 (Juni 2005): 38–42. http://dx.doi.org/10.1007/s11837-005-0134-x.
Der volle Inhalt der QuelleKorojy, B., L. Ekbom und H. Fredriksson. „Microsegregation and Solidification Shrinkage of Copper-Lead Base Alloys“. Advances in Materials Science and Engineering 2009 (2009): 1–9. http://dx.doi.org/10.1155/2009/627937.
Der volle Inhalt der QuelleLiu, Jin Xiang, Ri Dong Liao und Zheng Xi Zuo. „Numerical Study on Solidification Process and Shrinkage Porosity for Engine Block Casting“. Applied Mechanics and Materials 37-38 (November 2010): 753–56. http://dx.doi.org/10.4028/www.scientific.net/amm.37-38.753.
Der volle Inhalt der QuelleXie, Shi Kun, Rong Xi Yi, Zhi Gao, Xiang Xia, Cha Gen Hu und Xiu Yan Guo. „Effect of Rare Earth Ce on Casting Properties of Al-4.5Cu Alloy“. Advanced Materials Research 136 (Oktober 2010): 1–4. http://dx.doi.org/10.4028/www.scientific.net/amr.136.1.
Der volle Inhalt der QuelleDissertationen zum Thema "Solidification shrinkage"
Khalajzadeh, Vahid. „Modeling of shrinkage porosity defect formation during alloy solidification“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6155.
Der volle Inhalt der QuelleChen, Yin-Heng. „Study of solidification, shrinkage and natural convection in casting processes /“. The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487676847114631.
Der volle Inhalt der QuelleLagerstedt, Anders. „On the shrinkage of metals and its effect in solidification processing“. Doctoral thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-75.
Der volle Inhalt der QuelleThe shrinkage during solidification of aluminium and iron based alloys has been studied experimentally and theoretically. The determined shrinkage behaviour has been used in theoretical evaluation of shrinkage related phenomena during solidification.
Air gap formation was experimentally studied in cylindrical moulds. Aluminium based alloys were cast in a cast iron mould while iron based alloys were cast in a water-cooled copper mould. Displacements and temperatures were measured throughout the solidification process. The modelling work shows that the effect of vacancy incorporation during the solidification has to be taken into account in order to accurately describe the shrinkage.
Crack formation was studied during continuous casting of steel. A model for prediction of crack locations has been developed and extended to consider non-equilibrium solidification. The model demonstrates that the shrinkage due to vacancy condensation is an important parameter to regard when predicting crack formation.
The centreline segregation was studied, where the contributions from thermal and solidification shrinkage were analysed theoretically and compared with experimental findings. In order to compare macrosegregation in continuous casting and ingot casting, ingots cast with the same steel grade was analysed. However, the macrosegregation due to A-segregation is driven by the density difference due to segregation. This is also analysed experimentally as well as theoretically.
Svidró, Péter. „Study of solidification and volume change in lamellar cast iron with respect to defect formation mechanisms“. Licentiate thesis, KTH, Tillämpad processmetallurgi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136985.
Der volle Inhalt der QuelleQC 20131210
Tadesse, Abel. „On the Volume Changes during the Solidification of Cast Irons and Peritectic Steels“. Doctoral thesis, KTH, Metallernas gjutning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202558.
Der volle Inhalt der QuelleQC 20170228
O'Brien, Evan Daniel. „Welding with Low Alloy Steel Filler Metal of X65 Pipes Internally Clad with Alloy 625: Application in Pre-Salt Oil Extraction“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469018389.
Der volle Inhalt der QuelleDrbušková, Magdaléna. „Numerická analýza smršťování vybraných silikátových kompozitů“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226798.
Der volle Inhalt der QuelleŠupálek, Milan. „Přesné lití turbínových kol turbodmychadel ze slitin TiAl“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228729.
Der volle Inhalt der QuelleBhattacharya, Anirban. „Effect of Convection and Shrinkage on Solidification and Microstructure Formation“. Thesis, 2014. http://etd.iisc.ernet.in/handle/2005/2798.
Der volle Inhalt der QuelleBücher zum Thema "Solidification shrinkage"
Society, American Foundrymen's, Hrsg. Numerical simulation of mold filling, solidification, and feeding of T-plate shrinkage test castings used in ductile iron plant trials. [Des Plaines, Ill: American Foundrymen's Society, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Solidification shrinkage"
Mo, Asbjørn, Torgeir Rusten und Håvard J. Thevik. „Computation of Macrosegregation due to Solidification Shrinkage“. In Numerical Methods and Software Tools in Industrial Mathematics, 177–94. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-1984-2_8.
Der volle Inhalt der QuellePetersen, Jon S. „Crystallization Shrinkage in the Region of Partial Solidification: Implications for Silicate Melts“. In Structure and Dynamics of Partially Solidified Systems, 417–35. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3587-7_20.
Der volle Inhalt der QuelleSaad, Ali, Charles-André Gandin, Michel Bellet, Thomas Volkman und Dieter Herlach. „Simulation of shrinkage-induced macrosegregation in a multicomponent alloy during reduced-gravity solidification“. In TMS 2016: 145thAnnual Meeting & Exhibition: Supplemental Proceedings, 35–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274896.ch5.
Der volle Inhalt der QuelleHennings, A., E. Schaberger-Zimmermann und A. Bührig-Polaczek. „Solidification Morphology and Shrinkage Behavior of Mg-Alloys in Chill- and Sand Casting“. In Magnesium, 1020–25. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603565.ch158.
Der volle Inhalt der QuelleEskine, Dmitri, und Laurens Katgerman. „Experimental Study of Linear Shrinkage during Solidification of Binary and Commercial Aluminum Alloys“. In Continuous Casting, 276–81. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607331.ch41.
Der volle Inhalt der QuelleSaud, Ali, Charles-André Gandin, Michel Bellet, Thomas Volkmann und Dieter Herlach. „Simulation of shrinkage-induced macrosegregation in a multicomponent alloy during reduced-gravity solidification“. In TMS 2016 145th Annual Meeting & Exhibition, 35–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48254-5_5.
Der volle Inhalt der QuelleMortensen, Dag, Øyvind Jensen, Gerd-Ulrich Grün und Andreas Buchholz. „Macrosegregation Modelling of Large Sheet Ingots Including Grain Motion, Solidification Shrinkage and Mushy Zone Deformation“. In Light Metals 2019, 983–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05864-7_120.
Der volle Inhalt der QuelleWei, Yimeng, Areti Markopoulou, Yuanshuang Zhu, Eduardo Chamorro Martin und Nikol Kirova. „Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale“. In Proceedings of the 2021 DigitalFUTURES, 286–304. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_27.
Der volle Inhalt der QuelleCampbell, John. „Solidification shrinkage“. In Castings, 205–31. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075064790-8/50024-3.
Der volle Inhalt der QuelleMahomed, Nawaz. „Shrinkage Porosity in Steel Sand Castings: Formation, Classification and Inspection“. In Casting Processes and Modelling of Metallic Materials. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94392.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solidification shrinkage"
Wang, Hongda, Mohamed S. Hamed und S. Shankar. „EFFECT OF SHRINKAGE ON Al-Si ALLOY SOLIDIFICATION“. In Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2008. http://dx.doi.org/10.1615/ichmt.2008.cht.2220.
Der volle Inhalt der QuelleAlavi, Sina, und Mohammad Passandideh-Fard. „Numerical Simulation of Droplet Impact and Solidification Including Thermal Shrinkage in a Thermal Spray Process“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22583.
Der volle Inhalt der QuelleDohnalová, L., und P. Havlásek. „SIZE EFFECT ON THE ULTIMATE DRYING SHRINKAGE OF CONCRETE – MODELING WITH MICROPRESTRESS-SOLIDIFICATION THEORY“. In Engineering Mechanics 2020. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2020. http://dx.doi.org/10.21495/5896-3-122.
Der volle Inhalt der QuelleSedeh, Mahmoud Moeini, und J. M. Khodadadi. „Effect of Voids on Solidification of Phase Change Materials Infiltrated in Graphite Foams“. In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58405.
Der volle Inhalt der QuelleYomchinda, Thanan. „Modelling of solidification with shrinkage in vertical shell using particle method with spring-damp interaction“. In 2017 Third Asian Conference on Defence Technology (ACDT). IEEE, 2017. http://dx.doi.org/10.1109/acdt.2017.7886175.
Der volle Inhalt der QuelleAbdellatef, M., M. Alnaggar, G. Boumakis, G. Cusatis, G. Di-Luzio und R. Wendner. „Lattice Discrete Particle Modeling for Coupled Concrete Creep and Shrinkage Using the Solidification Microprestress Theory“. In 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479346.022.
Der volle Inhalt der QuelleRakita, Milan, und Qingyou Han. „Simulation of Solidification Defects for Prediction of Dross Formation in Aluminum 5182 Remelt Secondary Ingot“. In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84160.
Der volle Inhalt der QuelleLauer, Mark A., David R. Poirier, Robert G. Erdmann, Luke Johnson und Surendra N. Tewari. „Simulations of the Effects of Mold Properties on Directional Solidification“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66830.
Der volle Inhalt der QuelleMoeini Sedeh, Mahmoud, und J. M. Khodadadi. „Effect of Marangoni Convection on Solidification of Phase Change Materials Infiltrated in Porous Media in Presence of Voids“. In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17316.
Der volle Inhalt der QuelleLiu, Min-Jie, Zi-Qin Zhu, Li-Wu Fan und Zi-Tao Yu. „An Experimental Study of Inward Solidification of Nano-Enhanced Phase Change Materials (NePCM) Inside a Spherical Capsule“. In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7317.
Der volle Inhalt der Quelle