Auswahl der wissenschaftlichen Literatur zum Thema „Solid woody biofuels“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solid woody biofuels" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Solid woody biofuels"

1

Duca, Daniele, Andrea Pizzi, Manuela Mancini, Giorgio Rossini, Chiara Mengarelli, Alessio Ilari, Giulia Lucesoli, Giuseppe Toscano und Ester Foppa Pedretti. „Fast measurement by infrared spectroscopy as support to woody biofuels quality determination“. Journal of Agricultural Engineering 47, Nr. 1 (08.03.2016): 17. http://dx.doi.org/10.4081/jae.2016.499.

Der volle Inhalt der Quelle
Annotation:
The increase in the demand for energy supply during the past few decades has brought and will bring to a growth in the utilisation of renewable resources, in particular of solid biomasses. Considering the variability in the properties of biomass and the globalisation of the timber market, a chemical and physical characterisation is essential to determine the biomass quality. The specific international standards on solid biofuels (ISO 17225 series) describe proper specification and classification of wood chip and pellet, to ensure appropriate quality. Moreover, standard requires information about origin and source of the biomass, normally only to be declared by the producers. In order to fulfill the requirements for the biomass quality, the origin and the source should be assessed, even if currently is hard to determine, in particular on milled or densified biomass. Infrared spectroscopy can provide information on the biomass at the chemical level, directly linked also to its origin and source. This technique is fast and not destructive thus suitable also for online monitoring along the biofuel production chain. In this study, 60 samples belonging to 8 different species were collected and related spectra were acquired using a Fourier transform infrared (IR) spectrometer equipped with a module for solid analysis and analysed by principal component analysis. The results obtained show that the method is very efficient in the identification between coniferous and deciduous wood (99% confidence level) and good results were obtained in the recognition of coniferous/deciduous mixtures, too. Nevertheless, some clear differences have been also noted among intra-class grouping, but additional tests should be carried out. This technique can provide useful information to solid biofuel stakeholders about wood quality and origin, important especially for sustainability issues. Further work will be oriented to the development of IR methodologies for the fast measurement of other important biomass parameters (<em>e.g.</em>, ash content, high calorific value, nitrogen content, <em>etc</em>.).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Carneiro-Junior, José Airton de Mattos, Giulyane Felix de de Oliveira, Carine Tondo Alves, Heloysa Martins Carvalho Andrade, Silvio Alexandre Beisl Vieira de Beisl Vieira de Melo und Ednildo Andrade Torres. „Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction“. Energies 14, Nr. 12 (11.06.2021): 3465. http://dx.doi.org/10.3390/en14123465.

Der volle Inhalt der Quelle
Annotation:
Torrefaction has been investigated to improve the desirable properties of biomass as solid biofuel, usually used in natura as firewood in several countries. This paper has the main objective to present a broad characterization of the biomass Prosopis juliflora (P. juliflora), investigating its potential as a solid biofuel after its torrefaction process. The methodology was based on different procedures. The experimental runs were carried out at 230, 270, and 310 °C for 30 min, using a bench-scale torrefaction apparatus, with an inert atmosphere. In order to investigate the effect of temperature in constant time, torrefaction parameters were calculated, such as mass yield, energy yield, calorific value, base-to-acid ratio (B/A), and the alkaline index (AI). The physicochemical properties of the torrefied samples were determined and thermogravimetric analysis was used to determine the kinetic parameters at four different heating rates of 5, 10, 20, and 30 °C/min. Pyrolysis kinetics was investigated using the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) isoconversional methods. Highly thermally stable biofuels were obtained due to the great degradation of hemicellulose and cellulose during torrefaction at higher temperatures. The highest heating value (HHV) of the samples varied between 18.3 and 23.1 MJ/kg, and the energy yield between 81.1 and 96.2%. The results indicate that P. juliflora torrefied becomes a more attractive and competitive solid biofuel alternative in the generation of heat and energy in northeast Brazil.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Abu Darim, Rosmaria, Amizon Azizan und Jailani Salihon. „A Review on the Advancement of Online Monitoring System for Cellulosic Ethanol Production“. Advanced Materials Research 1113 (Juli 2015): 751–56. http://dx.doi.org/10.4028/www.scientific.net/amr.1113.751.

Der volle Inhalt der Quelle
Annotation:
Bioethanol is mainly produced by sugar fermentation process. Due to global demand on energy for transportation and environmental concern, biofuels as renewable energy in replacing petrol, the non-renewable energy source, has come into picture. Utilization of lignocellulosic biomass such as woody biomass (trees), herbaceous biomass (grasses) and waste cellulosic materials (solid waste) could be used in replacing starch (such as corn and potato) as source of sugar in producing bioethanol. Recently, study on cellulosic ethanol was focussing on fermentation process using ethanologenic strain such as engineered Escherichia coli and Saccharomyces cerevisiae. Invasive method in the study during fermentation may lead to uncertain or unwanted screening strategies or metabolic pathways. This paper reviews about the online monitoring system used by researchers in order to study the growth kinetics of ethanologenic strain. Online monitoring system for the Oxygen Transfer Rate (OTR) and Carbon dioxide Transfer Rate (CTR) is found to be the important method to study kinetic model of ethanologenic strain, thus increasing metabolic yields with optimum design condition.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Moreira, Bruno Rafael de Almeida, Ronaldo da Silva Viana, Victor Hugo Cruz, Anderson Chagas Magalhães, Celso Tadao Miasaki, Paulo Alexandre Monteiro de Figueiredo, Lucas Aparecido Manzani Lisboa et al. „Second-Generation Lignocellulosic Supportive Material Improves Atomic Ratios of C:O and H:O and Thermomechanical Behavior of Hybrid Non-Woody Pellets“. Molecules 25, Nr. 18 (15.09.2020): 4219. http://dx.doi.org/10.3390/molecules25184219.

Der volle Inhalt der Quelle
Annotation:
Pellets refer to solid biofuels for heating and power. The pellet’s integrity is of great relevant to ensure safe and effective transportation and storage, and comfort to stakeholders. Several materials that are supportive, whether organic and inorganic, to pellets exist. However, no work in the literature is linking making hybrid non-wood pellets with addition of residual biomass from distillation of cellulosic bioethanol, and this requires further investigations. Figuring out how effective this challenging agro-industrial residue could be for reinforcing non-wood pellets is accordingly the scientific point of this study focusing on management of waste and valorization of biomass. The pilot-scale manufacturing of hybrid pellets consisted of systematically pressing sugarcane bagasse with the lignocellulosic reinforcement at the mass ratios of 3:1, 1:1, and 1:3 on an automatic pelletizer machine at 200 MPa and 125 °C. Elemental contents of C and H, durability, and energy density all increased significantly from 50.05 to 53.50%, 5.95 to 7.80%, 95.90 to 99.55%, and 28.20 to 31.20 MJ kg−1, respectively, with blending the starting material with the reinforcement at 1:3. Preliminary evidence of residual biomass from distillation of second-generation bioethanol capable of highly improving molecular flammable/combustible properties, mechanical stability, and fuel power of composite non-wood pellets exist.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ivanova, Tatiana, Alexandru Muntean, Bohumi lHavrland und Petr Hutla. „Quality assessment of solid biofuel made of sweet sorghum biomass“. BIO Web of Conferences 10 (2018): 02007. http://dx.doi.org/10.1051/bioconf/20181002007.

Der volle Inhalt der Quelle
Annotation:
The present article relates to assessment of energy utilization of sweet sorghum waste biomass as solid biofuel (briquettes). The briquettes were produced from biomass of pure sweet sorghum after juice extraction, mixture of sorghum with wood sawdust (ratio 1:1) and mixture of sorghum with wood shavings (ratio 1:1). Chemical, physical and mechanical properties of produced briquettes were measured in accordance with appropriate standards. The research results showed that the mixed sorghum briquettes with wood shavings have the highest mechanical durability and the lowest ash content; on the other hand, briquettes made of sweet sorghum and wood sawdust havethe best values of all other parameters, including higher calorific values, density, etc. Although addition of residual wood biomass improved the general quality of sorghum based briquettes, it was stated that the briquettes made of pure processed sorghum stalks belong to the category of high quality agricultural solid biofuels. It can be concluded that sweet sorghum is of very good prospects and thus it is a promising biomass feedstock for solid biofuels production (not only for the production of liquid biofuel as it has been used by today and has been known before).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

SÁNCHEZ GATÓN, MIGUEL ÁNGEL, MARIA ISABEL CAMPOS LABADIE und JOSE JUAN SEGOVIA PURAS. „PREDICTION FOR TOTAL MOISTURE CONTENT IN WOOD PELLETS BY NEAR INFRARED SPECTROSCOPY (NIRS)“. DYNA 96, Nr. 3 (01.05.2021): 296–301. http://dx.doi.org/10.6036/9935.

Der volle Inhalt der Quelle
Annotation:
Mankind consumes as many fossil fuels per year as nature produced during a million years. Furthermore, energy consumption has tripled in the last 60 years, and is expected to be doubled in 2050, due to the technological and economic takeoff of large emerging powers. In light of this scenario, a change in energy policies should be aimed to promote energy efficiency and the use of sustainable energy resources, such as bioenergy, safely and environmental friendly. Biomass fuels take a main role in the EU's energy and climate policies, aimed at reducing CO2 emissions and combating Climate Change. Quality control of biofuels and knowledge of their characteristics reach a large relevance in any industrial application based on the energy use of biofuels. NIRS technology (near infrared spectroscopy, Near Infrared Reflectance Spectroscopy) is based on the interaction between electromagnetic radiation and material, and now is presented as an encouraging technological tool for quality testing of solid biofuels, since it is a non-destructive and much faster and cheaper analytical technique than traditional ones, which are based on current ISO standards. That interaction appears as spectral vibrations (energy absorption or absorbance) that are properly processed, allowing to measure the most important physical-chemical properties of solid biofuels in a fast, simple and non-destructive way. Wood pellet is the highest quality solid biofuel in the current biomass market, which is regulated by ENplus® certification scheme in the European-wide, ensuring the quality of product to consumers. Low heating value is the most important parameter of solid biofuel, and is strongly linked to total moisture content, so the control of moisture is key factor during pelletizing process. The original research carried out in this work allows to present the development of a NIRS prediction model for total moisture in wood pellets, in the range of values of 5 – 10 %, providing a much faster and more automated methodology for product quality control, both in production plants of wood pellets and in power plants with wood pellets as fuel. Keywords: near infrared spectroscopy, wood pellets, quality control, moisture, prediction model
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Marian, G., I. Gelu, B. Istrati, A. Gudîma, B. Nazar, A. Pavlenco, A. Banari und N. Daraduda. „Quality of pellets produced from agricultural wood residues specific to the Prut river basin“. UKRAINIAN BLACK SEA REGION AGRARIAN SCIENCE 109, Nr. 1 (2021): 84–93. http://dx.doi.org/10.31521/2313-092x/2021-1(109)-11.

Der volle Inhalt der Quelle
Annotation:
Quality of pellets produced from agricultural wood residues specific to the Prut river basin This paper presents an overview of the prospects for the use of agricultural wood residues, specific to the climatic zone adjacent to the Prut River and the qualitative characteristics of densified solid biofuels in the form of pellets produced from the main types of the agricultural wood biomass, taken from agricultural plantations in the Republic of Moldova and Botosani, Iasi, Vaslui and Galați counties in Romania. The aim of the paper is to establish the energy potential of the main indigenous agricultural wood residues and to analyze the quality of the pellets produced from these residues. The research results showed that the pellets produced from the studied agricultural residues mainly meet ENPlus 3 requirements for most qualitative parameters, except for those produced from blackberry and currant residues. Residues from the prunning of some types of fruit shrubs can be used to produce pellets by creating mixtures of different proportions, and their qualitative characteristics can be significantly improved by thermo-chemical pre-treatment of the raw material. Keywords: plant biomass, densified solid biofuels, pellets, biofuel, energy potential, agricultural wood residues.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tian, Feiyu, Deliang Xu und Xinwu Xu. „Extruded Solid Biofuels of Rice Straw Plus Oriented Strand Board Residues at Various Proportions“. Energies 13, Nr. 13 (04.07.2020): 3468. http://dx.doi.org/10.3390/en13133468.

Der volle Inhalt der Quelle
Annotation:
Disposal of vast agricultural residues has been a nerve-wracking social problem in many agriculture-intensive regions. Open-field combustion both squanders those biomass resources and causes severe atmospheric pollution and hazards. In addition, wood industries yield residues such as sanding powders without value application. Production of biofuels out of these biomass provides a multiple beneficial solution. To that end, this work focused on fabrication of biomass fuels using rice straws (Calorific value: 14.7 MJ/Kg) and wood residues from OSB industries (Calorific value: 17.3 MJ/Kg). Biofuel sticks from various proportions of biomass residues were made using an 18.5 KW industrial biomass extruder without adding bonding agents, achieving densities of 1.0–1.6 g/cm3 and comparative calorific values. The biofuel sticks exhibit moisture sensitivity when subjected to a ten-day conditioning. Release of residual stresses that were created during the densification process led to structural destruction of the products under moisture aggression. It’s highlighted that combination of rice straw particles with OSB residues gives sound extrusion process ability and high combustibility. The blend of rice straws and OSB residues are proven practically feasible for making solid biofuels. It’s suggested to promote the waste-to-wealth technological scheme in addressing the energy crisis worldwide, especially in those regions rich in agricultural residues while poor in non-renewable energy sources.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Halysh, Nataliia. „THE DISCRETE MODEL FOR THE FORMATION OF COMPANY’S STRATEGY ON THE SOLID BIOFUEL MARKET“. Economic Analysis, Nr. 28(4) (2018): 185–92. http://dx.doi.org/10.35774/econa2018.04.185.

Der volle Inhalt der Quelle
Annotation:
Introduction. In the article, the author pays attention to the research of the actual data of the enterprise, which produces the solid biofuel, with the isolation of raw material supply processes and the formation of the finished products’ cost structure. A system of differential equations is developed and presented. It reveals the influence of these factors and the dynamics of the share of the company's presence on the market of solid biofuels. The method of interval data analysis is substantiated. This method gives adequate results in the calculation of forecast intervals of the indicators and influences the adoption of strategic decisions on the presence of the company in the market of commodity products. An interlinear discrete model of the dynamics of the company's share for 2016 and 2017 is constructed, as a result of which its suitability for implementation in the activity of the enterprise is checked and taken into account while developing the strategy for its development. Purpose. The article aims to construct an interval discrete model of a company's market share at solid biofuels’ market using the system of difference equations and analysis of interval data. Based on the justification of the expediency of the chosen method of research, the other goal is identified. It is to develop the proposals for the implementation of this model in the activities of the enterprise for the production of wood pellets as the basis for providing a management strategy of this enterprise in uncertain external environment. Method. Such standard methods of scientific research as method of systematization, method of processing, method of summation of data, method of definition of general summary synthetic indicators, method of presentation of the results in the form of statistical tables, method of graphs and figures have been used in this research. A special method of data analysis based on interval arithmetic and interval data analysis has been implemented. Results. In the paper, scientific and methodological approaches to developing a strategy for the activities of enterprises producing solid biofuels have been improved. The proposals, which are given to the wood pellets’ enterprises, are based on the use of the developed interval model of market share dynamics of the enterprise at the solid biofuel market. It gives the ability to determine the range of values of the expected dynamics of this market share, depending on the cost of its products and the range of values of the market share by the consumption of raw materials. The results and recommendations, which are described in this article, can be used by enterprises producing solid biofuels (in particular, wood pellets) with a differentiated production cycle, which includes input and output logistics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Зотова, Elena Zotova, Сафонов und Andrey Safonov. „Analysis of methodologies for assessing physical, mechanical and thermal characteristics of wood pellets“. Forestry Engineering Journal 4, Nr. 1 (21.04.2014): 113–26. http://dx.doi.org/10.12737/3354.

Der volle Inhalt der Quelle
Annotation:
The paper discusses the methodology for assessing characteristics in relation to this type of wood biofuel. Part of the methods is adopted by the national standards of the Russian Federation, the other part is proposed because of the lack of regulations. Interest in solid biofuels in the last decade has increased steadily, a rather stable market was formed, and there are its own leaders. Until not long ago the absence of legally approved methods for determining physical, mechanical, thermal, chemical characteristics made significant challenges for the development of this promising trend of industrial production, both in Europe and in the Russian Federation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Solid woody biofuels"

1

Danielsson, Ellinor, und Jenny Ekman. „Skogliga biobränslens roll i Stockholm Exergis framtida strategi“. Thesis, KTH, Energisystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298048.

Der volle Inhalt der Quelle
Annotation:
Studien syftade till att ge en rekommendation angående hur fjärrvärmebolaget Stockholm Exergi bör utforma sin framtida strategi beträffande fasta oförädlade skogliga biobräanslen. Genom litteraturstudier och intervjuer utreddes dessa bränslens konkurrenskraft utifrån perspektiven klimatneutralitet, politiska direktiv och styrmedel, leveranssäkerhet samt lönsamhet. Resultatet visade bland annat att användningen av grenar och toppar kan medföra klimatnytta. Vidare framkom att implementeringen av EU:s nya förnybartdirektiv inte kommer att ha storskalig påverkan på Stockholm Exergis framtida användning av dessa bränslen. Gällande leveranssäkerhet och lönsamhet påvisades exempelvis en större framtida efterfrågan på skogliga restprodukter från andra sektorer. Ändock kunde slutsatsen dras att skogliga biobräanslen, under vissa förutsäattningar, har en viktig roll i Stockholm Exergis framtida fjärrvärmeproduktion.
The study aimed to give a recommendation regarding how the district heating company Stockholm Exergi should design their future strategy concerning unprocessed solid woody biofuels. Through literature studies and interviews, the competitiveness of the fuels has been assessed based on climate neutrality, political directives and instruments, security of supply as well as profitability. Among other things, the results showed that the use of tree branches and tops can imply positive climate effects. Furthermore, the implementation of EU's new renewable energy directive will only have a marginal impact on Stockholm Exergi's future use of woody biofuels. Regarding the security of supply and profitability,an increased future demand of forest residues in other sectors have been identified. However, the study concludes that, under certain circumstances, woody biofuels have an important role in Stockholm Exergi's future district heating production.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Escobar, Javier Farago. „A produção sustentável de biomassa florestal para energia no Brasil: O caso dos pellets de madeira“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/106/106131/tde-23032017-171758/.

Der volle Inhalt der Quelle
Annotation:
Com os planos de descarbonização de diversos países do mundo, o contínuo crescimento do mercado mundial dos pellets de madeira tende a aumentar, e para atender a demanda será necessário à inclusão de países emergentes dos quais revelam potencial o Brasil, dado que possui grande vocação na produção sustentável de florestas para produção de madeira do gênero Eucalyptus ssp., que apresenta produtividade entre 30% a 50% superior a qualquer pais do mundo, tornando-se a espécie ideal para produção em escala de biomassa para energia. O problema central consiste em viabilizar a produção sustentável de pellets de madeira, que possam atender a demanda nacional e internacional. Contudo este estudo inicialmente identificou a oferta e demanda de madeira para energia por tipo e fonte, posteriormente foram levantados os potenciais produtivos de florestas energéticas de curta rotação, para atender a iminente demanda nacional e internacional de madeira para energia, e finalmente foram detectados os problemas presentes na biomassa sólida vegetal do gênero Eucalyptus ssp., no Brasil. Como resultado este estudo mostra o potencial de produção sustentável de eucalipto de curtas rotação a 150 km dos portos brasileiros para produção e exportação de pellets, como também tem como resultado uma patente de invenção (BR 10 2016 023862 5) que resulta na extração a níveis aceitáveis pelas normas ENplus e semelhantes das emissões de cloro da madeira, e de metais alcalinos, fator limitante para o uso da biomassa na produção de pellets combustível. Evitando assim a formação de dioxinas, e organoclorados que prejudicam a saúde humana e propiciando também redução da formação de cinzas, diminuindo a corrosão dos equipamentos de combustão para produção de energia através de biocombustíveis sólidos.
The decarbonization plans worldwide, the world market of wood pellets tends to increase, and to meet the world demand it will be necessary to include emerging countries which show potential such as Brazil, as it has a great vocation in sustainable production of Eucalyptus wood and has higher productivity than any other country in the world, it is the ideal forest species for wood pellets production for energy in Brazil. The central problem is to enable the sustainable production, which can meet domestic and international demand of woody biomass for energy. This study initially identified the wood supply and demand for energy by type and source, and it was later raised to the productive potential of energy forests; finally it was detected the problems in solid biomass in Brazil. Results of this study show the sustainable production potential of short rotation Eucalyptus in range of (150 km) of Brazilian ports, aiming to pellets export, as well as this study has resulted in a patent, number: (BR 10 2016 023862 5), resulting in reduced to acceptable levels (ENplus), by the relevant rules of chlorine emissions, thus preventing the formation of dioxins, and allowing removal of alkali metals thereby reducing the formation of ash and decreasing the corrosion of combustion systems for energy production by solid biofuels.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Solid woody biofuels"

1

Zhu, Zhe, Saqib Sohail Toor, Lasse Rosendahl, Donghong Yu und Guanyi Chen. „Experimental Study of Subcritical Water Liquefaction of Biomass: Effects of Catalyst and Biomass Species“. In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6708.

Der volle Inhalt der Quelle
Annotation:
In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 °C), with and without the presence of a catalyst. The effects of catalyst and biomass type (woody and non-woody) on the biomass conversion, bio-crude yield, and the qualities of products were studied. The results suggested that the addition of potassium carbonate as a catalyst showed a positive effect on bio-crude yield, especially for wood, where it was enhanced to 47.48 wt%. Macroalgae showed a higher biomass conversion and a lower bio-crude yield than other woody biomass investigated in the present study, irrespective of whether the catalyst was used. Meanwhile, the effect of catalyst on macroalgae was less significant than that of woody biomass. The heating values and thermal stability of all bio-crudes were analyzed. The results showed that the higher heating values (HHVs) were in the range of 24.15 to 31.79 MJ/kg, and they were enhanced in the presence of a catalyst, except for that of the macroalgae. The solid residues were characterized by heating value, SEM and FTIR. It was found that the addition of K2CO3 lowered the solids quality in terms of the heating values, while it did not have apparent effect on the functional groups of solid residues. SEM analysis of the raw biomass and solid residues revealed that the char formation for wood, sawdust and macroalgae had initially finished when they were treated in hot compressed water at 300 °C, while conversion of bark had not completed yet.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schmidt, Erik Ravn, Jens Christian Clausen und Fritz Luxhøi. „Large-Scale Handling and Use of Solid Biofuels“. In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-327.

Der volle Inhalt der Quelle
Annotation:
Utilising biomass in the CHP production is not without difficulties: the chemical and physical characteristics of the biofuels; corrosion, slagging and fouling; and working environment. An in-situ high-temperature corrosion monitoring test system was successfully developed. Furthermore, activities have been launched to develop a straw pre-processing method separating the aggressive substances from straw. As a result of the gasification projects (straw, coal-straw, wood chips) it was concluded that it is possible to gasify straw — probably for 100% straw and definitely for 50/50 blends, although with some difficulties — and for wood chips deposit formation was a major obstacle. Further R&D is definitely needed, but with the limited international interest the gasification technology seems to have reached a dead end in Denmark. Another focal point is the working environment, where care must be taken to limit any potential health hazards resulting from the handling of long-term stored biofuels.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Matus, Milos. „THE INFLUENCE OF SIZE FRACTION AND MOISTURE CONTENT ON THE COMPRESSIBILITY OF WOOD SAWDUST IN EFFECTIVE PROCESS OF PRODUCTION A SOLID BIOFUEL“. In 14th SGEM GeoConference on ENERGY AND CLEAN TECHNOLOGIES. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b41/s17.072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie