Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solid-to-plasma transition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solid-to-plasma transition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solid-to-plasma transition"
Ferguson, Ken R., Maximilian Bucher, Tais Gorkhover, Sébastien Boutet, Hironobu Fukuzawa, Jason E. Koglin, Yoshiaki Kumagai et al. „Transient lattice contraction in the solid-to-plasma transition“. Science Advances 2, Nr. 1 (Januar 2016): e1500837. http://dx.doi.org/10.1126/sciadv.1500837.
Der volle Inhalt der QuelleDorchies, F., und V. Recoules. „Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic“. Physics Reports 657 (Oktober 2016): 1–26. http://dx.doi.org/10.1016/j.physrep.2016.08.003.
Der volle Inhalt der QuelleLiu, Chen, Andriani Mentzelopoulou, Fotini Papagavriil, Prashanth Ramachandran, Artemis Perraki, Lucas Claus, Sebastian Barg et al. „SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis“. PLOS Biology 21, Nr. 9 (18.09.2023): e3002305. http://dx.doi.org/10.1371/journal.pbio.3002305.
Der volle Inhalt der QuelleWang, Xin-Ke, Igor Veremchuk, Matej Bobnar, Jing-Tai Zhao und Yuri Grin. „Solid solution Pb1−xEuxTe: constitution and thermoelectric behavior“. Inorganic Chemistry Frontiers 3, Nr. 9 (2016): 1152–59. http://dx.doi.org/10.1039/c6qi00161k.
Der volle Inhalt der QuelleFISHER, DIMITRI V., ZOHAR HENIS, SHALOM ELIEZER und JUERGEN MEYER-TER-VEHN. „Core holes, charge disorder, and transition from metallic to plasma properties in ultrashort pulse irradiation of metals“. Laser and Particle Beams 24, Nr. 1 (März 2006): 81–94. http://dx.doi.org/10.1017/s0263034606060137.
Der volle Inhalt der QuelleSmirnova, K. V., D. A. Shutov, A. N. Ivanov und V. V. Rybkin. „Plasma-solution synthesis of particles containing transition metals“. Journal of Physics: Conference Series 2064, Nr. 1 (01.11.2021): 012096. http://dx.doi.org/10.1088/1742-6596/2064/1/012096.
Der volle Inhalt der QuelleSingh, Swarnima, P. Bandyopadhyay, Krishan Kumar, M. G. Hariprasad, S. Arumugam und A. Sen. „Transition of a 2D crystal to a non-equilibrium two-phase coexistence state“. Physics of Plasmas 30, Nr. 4 (April 2023): 043704. http://dx.doi.org/10.1063/5.0139228.
Der volle Inhalt der QuelleRao, Lin, Edward G. Gillan und Richard B. Kaner. „Rapid synthesis of transition-metal borides by solid-state metathesis“. Journal of Materials Research 10, Nr. 2 (Februar 1995): 353–61. http://dx.doi.org/10.1557/jmr.1995.0353.
Der volle Inhalt der QuelleYeh, F. B., und P. S. Wei. „Effects of Plasma Parameters on the Temperature Field in a Workpiece Experiencing Solid-Liquid Phase Transition“. Journal of Heat Transfer 127, Nr. 9 (27.04.2005): 987–94. http://dx.doi.org/10.1115/1.1999653.
Der volle Inhalt der QuelleTachibana, K., und Y. Hayashi. „Analysis of the Coulomb-solidification Process in Particle Plasmas“. Australian Journal of Physics 48, Nr. 3 (1995): 469. http://dx.doi.org/10.1071/ph950469.
Der volle Inhalt der QuelleDissertationen zum Thema "Solid-to-plasma transition"
Liotard, Romain. „Étude de la transition solide-plasma du polystyrène et de son influence sur les simulations de fusion par confinement inertiel en attaque directe“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0222.
Der volle Inhalt der QuelleDirect drive inertial confinement fusion (ICF) is a method considered for achieving nuclear fusion reactions by irradiating a target with multiple high-intensity laser pulses. This target is a sphere made of a solid material called an ablator (usually polystyrene), which surrounds a fusion fuel (usually cryogenic deuterium-tritium (DT)). The energy delivered by the laser irradiation causes the ejection of the ablator and the implosion of the target due to the rocket effect. The mechanical work exerted on the hotspot (the center of the target) during the implosion is expected to trigger fusion reactions. Currently, the radiative hydrodynamic codes used to simulate ICF implosions generally assume that the ablator is initially in a plasma state, although it is actually in a solid state. This solid state could play a role during the initial interaction between the lasers and the target. Due to the initial transparency of the ablator, the laser can penetrate the target, leading to the "shine-through" effect, which can modify the laser energy deposition and potentially alter the dynamics of the shocks propagating within the target. Additionally, changes in the laser imprint can influence the evolution of hydrodynamic instabilities during the implosion.The objective of this thesis is to develop a solid-to-plasma transition model for polystyrene based on existing models, that can be integrated into hydrodynamic simulation codes for ICF. To achieve this, the model needed to be adapted to the specific constraints of these codes, taking into account the dependencies of the model on the evolution of all hydrodynamic quantities, and optimizing the numerical costs to avoid an excessive increase in simulation time. The integration of these modifications required experimental validation of the model, which was carried out through an experiment on the GCLT laser at CEA-DIF, measuring the evolution of the transmittance of a polystyrene sheet irradiated by a laser pulse. The results showed a good correlation between simulations and experimental measurements, confirming the validity of the new coupled model. This model was then used to study the potential effects of the initial solid state on direct drive ICF simulations. The results revealed that accounting for the solid-to-plasma transition influences the growth of hydrodynamic instabilities. Specifically, we observed a reduction in low spatial frequency instabilities for targets with a thick ablator, and a general increase in high spatial frequency instabilities due to the non-linearity of the solid-to-plasma transition phenomenon
Buchteile zum Thema "Solid-to-plasma transition"
Grimes, M. K., Y. S. Lee und M. C. Downer. „Solid to Plasma Transition in Fs-Laser-Irradiated Fe: Collapse of the Spin-Orbit Gap“. In Applications of High-Field and Short Wavelength Sources, 131–34. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9241-6_20.
Der volle Inhalt der QuelleGrimes, Mikal K., Yun-Shik Lee und Michael C. Downer. „Vacuum Heating vs. Resonance Absorption in the Solid to Plasma Transition of fs-Laser-Irradiated Iron and Aluminum“. In Springer Series in Chemical Physics, 398–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72289-9_119.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solid-to-plasma transition"
Tsui, Y. Y., A. Ng, Z. Chen, M. Z. Mo, S. H. Glenzer, V. Recoules und L. Soulard. „Ultrashort Laser Generated Warm Dense Matter - Transition from Solid to Plasma“. In 2020 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2020. http://dx.doi.org/10.1109/icops37625.2020.9717870.
Der volle Inhalt der QuelleGrimes, M. K., Y. S. Lee und M. C. Downer. „Solid to Plasma Transition in fs-Laser-Irradiated Fe: Collapse of the Spin-Orbit Gap“. In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the33.
Der volle Inhalt der QuelleSheshadri, Karthik, M. N. Manas, Shruti Raj, Narasimhaiah Ramesh und T. S. Sheshadri. „An analytical formulation of the copper load solid to plasma transition problem when driven by a pulse forming network“. In 2012 16th International Symposium on Electromagnetic Launch Technology (EML). IEEE, 2012. http://dx.doi.org/10.1109/eml.2012.6325052.
Der volle Inhalt der QuelleMulser, P., A. Al-Khateeb, D. Bauer, M. Hahn, D. Lewien, H. Ruhl und A. Saemann. „Scenarios of superintense fs laser pulses interacting with solids“. In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.md5.
Der volle Inhalt der QuelleGarbiec, Dariusz, Maria Wiśniewska, Mateusz Marczewski, Tomasz Mościcki, Rafał Psiuk, Justyna Chrzanowska-Giżyńska, Agnieszka Krawczyńska, Bogusława Adamczyk-Cieślak und Małgorzata Lewandowska. „Spark Plasma Sintering Of Tungsten Boride With Transition Metals Admixture“. In World Powder Metallurgy 2022 Congress & Exhibition. EPMA, 2022. http://dx.doi.org/10.59499/wp225371814.
Der volle Inhalt der QuelleNickles, P. V., V. N. Shlyaptsev, M. P. Kalachnikov, M. Schnuerer, T. Schlegel und W. Sandner. „Dual pulse pumping of efficient, short pulse table top X-ray lasers“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.11.
Der volle Inhalt der QuelleSmirnova, K. V., D. A. Shutov, A. N. Ivanov und V. V. Rybkin. „Plasma-solution synthesis of a solid phase from solutions of iron and cobalt nitrates of various concentrations“. In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.n1-o-046701.
Der volle Inhalt der QuelleBarber, David, H. A. Calderón, Julio Quintero und Francisco C. Robles Hernandez. „Synthesis of Carbon Nanostructures by Thermo-Mechanical Means“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89866.
Der volle Inhalt der QuelleTorrell, M., I. G. Cano, J. M. Miguel, J. M. Guilemany, M. A. Laguna-Bercero und V. M. Orera. „Solid Oxide Fuel Cells Produced by Atmospheric Plasma Spray Technology: Structural and Electrochemical Characterization“. In ITSC 2012, herausgegeben von R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, A. McDonald und F. L. Toma. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.itsc2012p0627.
Der volle Inhalt der QuelleLuk, T. S., McPherson, D. Tate, K. Boyer, C. K. Rhodes, V. L. Jacobs, P. G. Burkhalter, A. Zigler, D. A. Newman und D. J. Nagel. „X-Ray Spectral Determination of Electron Density in Dense Laser-Excited Targets*“. In Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.tua1.
Der volle Inhalt der Quelle