Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solid Oxide Cells (SOC)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solid Oxide Cells (SOC)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solid Oxide Cells (SOC)"
Horlick, Samuel A., Scott Swartz, David Kopechek, Geoff Merchant, Taylor Cochran und John Funk. „Progress of Solid Oxide Electrolysis and Fuel Cells for Hydrogen Generation, Power Generation, Grid Stabilization, and Power-to-X Applications“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 152. http://dx.doi.org/10.1149/ma2023-0154152mtgabs.
Der volle Inhalt der QuelleIkegawa, Kazutaka, Kengo Miyara, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda und Kazunari Sasaki. „Performance and Durability of Solid Oxide Electrolysis Cell Air Electrodes Prepared By Various Conditions“. ECS Transactions 109, Nr. 11 (30.09.2022): 71–78. http://dx.doi.org/10.1149/10911.0071ecst.
Der volle Inhalt der QuelleIkegawa, Kazutaka, Kengo Miyara, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda und Kazunari Sasaki. „Reversible Solid Oxide Cells: Cycling and Long-Term Durability of Air Electrodes“. ECS Transactions 111, Nr. 6 (19.05.2023): 313–21. http://dx.doi.org/10.1149/11106.0313ecst.
Der volle Inhalt der QuelleSahu, Sulata K., Dhruba Panthi, Ibrahim Soliman, Hai Feng und Yanhai Du. „Fabrication and Performance of Micro-Tubular Solid Oxide Cells“. Energies 15, Nr. 10 (12.05.2022): 3536. http://dx.doi.org/10.3390/en15103536.
Der volle Inhalt der QuelleShang, Yijing, und Ming Chen. „Phase-Field Modelling of Microstructure Evolution in Solid Oxide Cells“. ECS Meeting Abstracts MA2023-02, Nr. 46 (22.12.2023): 2253. http://dx.doi.org/10.1149/ma2023-02462253mtgabs.
Der volle Inhalt der QuelleYamada, Kei, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda und Kazunari Sasaki. „Ni-Alloy Fuel Electrodes for Reversible Solid Oxide Cells“. ECS Meeting Abstracts MA2022-02, Nr. 47 (09.10.2022): 1781. http://dx.doi.org/10.1149/ma2022-02471781mtgabs.
Der volle Inhalt der QuelleSasaki, Kazunari, Katsuya Natsukoshi, Kei Yamada, Kazutaka Ikegawa, Masahiro Yasutake, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda, Bilge Yildiz und Harry L. Tuller. „Reversible Solid Oxide Cells: Selection of Fuel Electrode Materials for Improved Performance and Durability“. ECS Transactions 111, Nr. 6 (19.05.2023): 1901–6. http://dx.doi.org/10.1149/11106.1901ecst.
Der volle Inhalt der QuelleKupecki, Jakub, Konrad Motyliński, Marek Skrzypkiewicz, Michał Wierzbicki und Yevgeniy Naumovich. „Preliminary Electrochemical Characterization of Anode Supported Solid Oxide Cell (AS-SOC) Produced in the Institute of Power Engineering Operated in Electrolysis Mode (SOEC)“. Archives of Thermodynamics 38, Nr. 4 (20.12.2017): 53–63. http://dx.doi.org/10.1515/aoter-2017-0024.
Der volle Inhalt der QuelleShang, Yijing, und Ming Chen. „Phase-Field Modelling of Microstructure Evolution in Solid Oxide Cells“. ECS Transactions 112, Nr. 5 (29.09.2023): 103–20. http://dx.doi.org/10.1149/11205.0103ecst.
Der volle Inhalt der QuelleZhao, Chenhuan, Yifeng Li, Wenqiang Zhang, Yun Zheng, Xiaoming Lou, Bo Yu, Jing Chen, Yan Chen, Meilin Liu und Jianchen Wang. „Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells“. Energy & Environmental Science 13, Nr. 1 (2020): 53–85. http://dx.doi.org/10.1039/c9ee02230a.
Der volle Inhalt der QuelleDissertationen zum Thema "Solid Oxide Cells (SOC)"
Nelson, George Joseph. „Solid Oxide Cell Constriction Resistance Effects“. Thesis, Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10563.
Der volle Inhalt der QuelleChien, Chang-Yin. „Methane and Solid Carbon Based Solid Oxide Fuel Cells“. University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1299670407.
Der volle Inhalt der QuelleTorres-Caceres, Jonathan. „Manufacturing of Single Solid Oxide Fuel Cells“. Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5875.
Der volle Inhalt der QuelleM.S.M.E.
Masters
Mechanical and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering; Mechanical Systems
Choi, Hyunkyu. „Perovskite-type oxide material as electro-catalysts for solid oxide fuel cells“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354652812.
Der volle Inhalt der QuelleZalar, Frank M. „Model and theoretical simulation of solid oxide fuel cells“. Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1189691948.
Der volle Inhalt der QuelleJohnson, Janine B. „Fracture Failure of Solid Oxide Fuel Cells“. Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4847.
Der volle Inhalt der QuelleGuzman, Montanez Felipe. „SAMARIUM-BASED INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS“. University of Akron / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=akron1134056820.
Der volle Inhalt der QuelleBedon, Andrea. „Advanced materials for Solid Oxide Fuel Cells innovation: reversible and single chamber Solid Oxide Fuel Cells, frontiers in sustainable energy“. Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426788.
Der volle Inhalt der QuelleLa transizione energetica sta cambiando il modo in cui usiamo, convertiamo e immagazziniamo l’energia per tutti i nostri scopi. Si tratta di un processo spinto dal crescente riconoscimento delle rilevanti conseguenze che l’attuale uso intensivo di fonti energetiche fossili comporta, e non è ancora chiaro esattamente a che situazione porterà. Sono molte le tecnologie che di volta in volta si trovano proposte come la soluzione principe per il futuro dell’energia. Tra di esse, le celle a combustibile a ossido solido (SOFC) meritano particolare attenzione. Sono dispositivi ad alta temperatura, in grado di convertire diverse tipologie di combustibili (idrogeno, metanolo, idrocarburi…) in energia elettrica, con efficienze che possono raggiungere il 90% se accoppiate con sistemi di recupero del calore. Queste celle a combustibile si possono operare anche reversibilmente come elettrolizzatori allo stato solido. Possono perciò immagazzinare energia elettrica come combustibile in modo da assorbire le fluttuazioni a cui è sottoposta la produzione di elettricità da fonti rinnovabili, fino al momento in cui c’è bisogno. Per via della alta temperatura operativa, non richiedono metalli nobili. La tecnologia delle SOFC non è ancora matura per una diffusione in larga scala, ma la ricerca in questo senso è intensa. Uno dei difetti principali di questi dispositivi è la ristretta vita operativa paragonata agli alti costi, a causa della degradazione prematura di alcuni componenti. Questo lavoro di tesi è un tentativo verso il miglioramento della sostenibilità economica delle SOFC, attraverso la ricerca di materiali più stabili e che permettano soluzioni più economiche. Particolare attenzione è stata riservata allo sviluppo di materiali adatti a operare in celle reversibili e a camera singola (SC-SOFC), due varianti innovative della SOFC di base. È stato proposto l’utilizzo di un approccio mirato per la progettazione dei nuovi materiali, consistente nell’accoppiamento di una fase conduttrice mista ionica ed elettronica (MIEC) che funge da substrato per una fase attiva, specificamente scelta per ottenere le proprietà ricercate per la rispettiva applicazione. La perovskite LSGF (La0.6Sr0.4Ga0.3Fe0.7O3) è stata sintetizzata e completamente caratterizzata come substrato a conduttività mista. Successivamente, è stata impregnata con ossidi di manganese e ferro, in virtù anche della loro economicità, e i due differenti nanocompositi così ottenuti sono stati studiati in dettaglio. La loro attività come elettrodi per celle a combustibile è stata testata, e si sono registrate prestazioni interessanti del nanocomposito con ferro come catodo e del nanocomposito con manganese come anodo. Una cella a combustibile basata su elettrolita LSGM e con elettrodi compositi a base LSGF è stata preparata e testata con successo. L’altissima omogeneità strutturale di questa cella, che sfrutta materiali molto simili sia come elettrolita che come elettrodi, sarebbe in grado di prevenire la formazione di qualsiasi fase isolante. Gli anodi privi di nichel evitano ogni problema legato all’accrescimento delle particelle di metallo, assicurando al dispositivo una migliore durabilità. LSGF è stato testato come materiale elettrodico per celle simmetriche reversibili, ottenendo risultati promettenti. Un materiale catodico interamente selettivo è stato sviluppato a partire dalla brownmillerite Ca2FeAl0.95Mg0.05O5, impregnata a sua volta con ossido di ferro. Con questo materiale si sono ottenute prestazioni discrete, nonostante l’economicità evidente degli elementi utilizzati. I risultati preliminari indicano che tali materiali potrebbero essere utilizzati per celle a camera singola evitando le ampie perdite di combustibile, inevitabili con l’uso dei catodi dell’attuale stato dell’arte.
Mirzababaei, Jelvehnaz. „Solid Oxide Fuel Cells with Methane and Fe/Ti Oxide Fuels“. University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1415461807.
Der volle Inhalt der QuelleFord, James Christopher. „Thermodynamic optimization of a planar solid oxide fuel cell“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45843.
Der volle Inhalt der QuelleBücher zum Thema "Solid Oxide Cells (SOC)"
Maric, Radenka, und Gholamreza Mirshekari. Solid Oxide Fuel Cells. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2020. | Series: Electrochemical energy storage & conversion: CRC Press, 2020. http://dx.doi.org/10.1201/9780429100000.
Der volle Inhalt der QuelleNi, Meng, und Tim S. Zhao, Hrsg. Solid Oxide Fuel Cells. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737777.
Der volle Inhalt der QuelleIshihara, Tatsumi, Hrsg. Perovskite Oxide for Solid Oxide Fuel Cells. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77708-5.
Der volle Inhalt der QuellePerovskite oxide for solid oxide fuel cells. Dordrecht: Springer, 2009.
Den vollen Inhalt der Quelle findenBove, Roberto, und Stefano Ubertini, Hrsg. Modeling Solid Oxide Fuel Cells. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6995-6.
Der volle Inhalt der QuelleShao, Zongping, und Moses O. Tadé. Intermediate-Temperature Solid Oxide Fuel Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52936-2.
Der volle Inhalt der QuelleBansal, Narottam P., Prabhakar Singh, Sujanto Widjaja und Dileep Singh, Hrsg. Advances in Solid Oxide Fuel Cells VII. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095249.
Der volle Inhalt der QuelleBansal, Narottam P., Prabhakar Singh, Dileep Singh und Jonathan Salem, Hrsg. Advances in Solid Oxide Fuel Cells V. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470584316.
Der volle Inhalt der QuelleHe, Weidong, Weiqiang Lv und James Dickerson. Gas Transport in Solid Oxide Fuel Cells. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09737-4.
Der volle Inhalt der QuelleBansal, Narottam P., Jonathan Salem und Dongming Zhu, Hrsg. Advances in Solid Oxide Fuel Cells III. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470339534.
Der volle Inhalt der QuelleBuchteile zum Thema "Solid Oxide Cells (SOC)"
Zuo, Chendong, Mingfei Liu und Meilin Liu. „Solid Oxide Fuel Cells“. In Sol-Gel Processing for Conventional and Alternative Energy, 7–36. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1957-0_2.
Der volle Inhalt der QuelleLim, Hui Hui, Erick Sulistya, May Yuan Wong, Babak Salamatinia und Bahman Amini Horri. „Ceramic Nanocomposites for Solid Oxide Fuel Cells“. In Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications, 157–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49512-5_6.
Der volle Inhalt der QuelleYoshida, Hiroyuki, Mitsunobu Kawano, Koji Hashino, Toru Inagaki, Seiichi Suda, Koichi Kawahara, Hiroshi Ijichi und Hideyuki Nagahara. „Microstructure Analysis on Network-Structure Formation of SOFC Anode from NiO-SDC Composite Particles Prepared by Spray Pyrolysis Technique“. In Advances in Solid Oxide Fuel Cells IV, 193–202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470456309.ch18.
Der volle Inhalt der QuelleFujimoto, Tatsuo, Masashi Nakabayashi, Hiroshi Tsuge, Masakazu Katsuno, Shinya Sato, Shoji Uhsio, Komomo Tani, Hirokastu Yashiro, Hosei Hirano und Takayuki Yano. „The Effects Of Excess Silicon And Carbon In SiC Source Materials On Sic Single Crystal Growth In Physical Vapour Transport Method“. In Advances in Solid Oxide Fuel Cells and Electronic Ceramics, 115–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119211501.ch12.
Der volle Inhalt der QuelleBao, Wei Tao, Jian Feng Gao und Guang Yao Meng. „Preparation of SDC Interlayer and Influence on Performances of Anode Supported Solid Oxide Fuel Cells“. In Key Engineering Materials, 486–89. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.486.
Der volle Inhalt der QuelleKawahara, Koichi, Seiichi Suda, Seiji Takahashi, Mitsunobu Kawano, Hiroyuki Yoshida und Toru Inagaki. „Control of Microstructure of NiO-SDC Composite Particles for Development of High Performance SOFC Anodes“. In Advances in Solid Oxide Fuel Cells II: Ceramic Engineering and Science Proceedings, Volume 27, Issue 4, 183–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291337.ch18.
Der volle Inhalt der QuelleAtkinson, A., S. J. Skinner und J. A. Kilner. „Solid Oxide Fuel Cells“. In Fuel Cells, 657–85. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5785-5_19.
Der volle Inhalt der QuelleDey, Shoroshi, Jayanta Mukhopadhyay und Abhijit Das Sharma. „Efficiency of the Solid Oxide Cell (SOC) Using Nanocrystalline Mixed Ionic and Electronic Conducting (MIEC) Oxides as Air Electrode Materials in Conjunction with Doped Ceria-Based Interlayers“. In Applications of Microscopy in Materials and Life Sciences, 43–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2982-2_5.
Der volle Inhalt der QuelleSong, Jia-Liang, Hua Chen, Yong-Dong Chen, Gai-Ge Yu, Hong-Wei Zou und Bing-Chuan Han. „Coupled Heat Transfer Characteristics of SiC High Temperature Heat Exchanger in Solid Oxide Fuel Cell“. In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 200–213. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_23.
Der volle Inhalt der QuelleSammes, Nigel M., Kevin Galloway, Mustafa F. Serincan, Toshio Suzuki, Toshiaki Yamaguchi, Masanobu Awano und Whitney Colella. „Solid Oxide Fuel Cells“. In Handbook of Climate Change Mitigation and Adaptation, 3087–112. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14409-2_44.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solid Oxide Cells (SOC)"
Park, Kwangjin, Yu-Mi Kim und Joongmyeon Bae. „Performance Behavior for Solid Oxide Electrolysis Cells“. In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85071.
Der volle Inhalt der QuelleWang, Kang, Pingying Zeng und Jeongmin Ahn. „Performance Investigation of YSZ-SDC Solid Oxide Fuel Cells“. In ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2012 6th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fuelcell2012-91429.
Der volle Inhalt der QuelleWilhelm, Cole, Kenta Tamaoki, Hisashi Nakamura und Jeongmin Ahn. „Investigation of Ammonia as a Fuel for Solid Oxide Fuel Cells“. In ASME Power Applied R&D 2023. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/power2023-108936.
Der volle Inhalt der QuelleNelson, George, und Comas Haynes. „Parametric Studies of Constriction Resistance Effects Upon Solid Oxide Cell Transport Phenomena“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15100.
Der volle Inhalt der QuelleWang, Caisheng, und M. Hashem Nehrir. „Load Transient Mitigation for Solid Oxide Fuel Cells“. In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97268.
Der volle Inhalt der QuelleKarl, Ju¨rgen, Nadine Frank, Sotiris Karellas, Mathilde Saule und Ulrich Hohenwarter. „Conversion of Syngas From Biomass in Solid Oxide Fuel Cells“. In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97089.
Der volle Inhalt der QuelleSohal, M. S., J. E. O’Brien, C. M. Stoots, V. I. Sharma, B. Yildiz und A. Virkar. „Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis“. In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33332.
Der volle Inhalt der QuelleMenzer, Sophie, Grover Coors, Dustin Beeaff und Dan Storjohann. „Development of Low-Cost Anode Material for Solid Oxide Fuel Cells“. In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65099.
Der volle Inhalt der QuelleShakrawar, S., J. G. Pharoah, B. A. Peppley und S. B. Beale. „A Review of Stress Analysis Issues for Solid Oxide Fuel Cells“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40968.
Der volle Inhalt der QuelleSchiller, Günter, Rudolf Henne, Michael Lang und Matthias Müller. „DC and RF Plasma Processing for Fabrication of Solid Oxide Fuel Cells“. In ITSC2004, herausgegeben von Basil R. Marple und Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0047.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Solid Oxide Cells (SOC)"
Singh, Raj. Innovative Seals for Solid Oxide Fuel Cells (SOFC). Office of Scientific and Technical Information (OSTI), Juni 2008. http://dx.doi.org/10.2172/953469.
Der volle Inhalt der QuelleSingh, Raj. Innovative Self-Healing Seals for Solid Oxide Fuel Cells (SOFC). Office of Scientific and Technical Information (OSTI), Juni 2012. http://dx.doi.org/10.2172/1054518.
Der volle Inhalt der QuelleDr. Christopher E. Milliken und Dr. Robert C. Ruhl. LOW COST MULTI-LAYER FABRICATION METHOD FOR SOLID OXIDE FUEL CELLS (SOFC). Office of Scientific and Technical Information (OSTI), Mai 2001. http://dx.doi.org/10.2172/810440.
Der volle Inhalt der QuellePrasad Enjeti und J.W. Howze. Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC). Office of Scientific and Technical Information (OSTI), Dezember 2003. http://dx.doi.org/10.2172/861667.
Der volle Inhalt der QuelleSkone, Timothy J. Solid oxide fuel cell (SOFC) Manufacture. Office of Scientific and Technical Information (OSTI), Juni 2015. http://dx.doi.org/10.2172/1509449.
Der volle Inhalt der QuelleJamieson, Matthew. Solid Oxide Fuel Cell (SOEC) operations. Office of Scientific and Technical Information (OSTI), Januar 2023. http://dx.doi.org/10.2172/1922944.
Der volle Inhalt der QuelleGhezel-Ayagh, Hossein. TRANSFORMATIONAL SOLID OXIDE FUEL CELL (SOFC) TECHNOLOGY. Office of Scientific and Technical Information (OSTI), Januar 2022. http://dx.doi.org/10.2172/1854102.
Der volle Inhalt der QuelleHaberman, Ben, Carlos Martinez-Baca und Greg Rush. LG Solid Oxide Fuel Cell (SOFC) Model Development. Office of Scientific and Technical Information (OSTI), Mai 2013. http://dx.doi.org/10.2172/1093540.
Der volle Inhalt der QuelleSkone, Timothy J. Life Cycle Analysis: Solid Oxide Fuel Cell (SOFC) Power Plants. Office of Scientific and Technical Information (OSTI), Mai 2018. http://dx.doi.org/10.2172/1542445.
Der volle Inhalt der QuelleManohar S. Sohal, Anil V. Virkar, Sergey N. Rashkeev und Michael V. Glazoff. Modeling Degradation in Solid Oxide Electrolysis Cells. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/993195.
Der volle Inhalt der Quelle