Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solar engines“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solar engines" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solar engines"
Luo, Haoyan. „Efficiency Improvement and Key Opportunities of Stirling Engine“. Highlights in Science, Engineering and Technology 88 (29.03.2024): 835–46. http://dx.doi.org/10.54097/jwd1s558.
Der volle Inhalt der QuelleBadescu, Viorel. „Simulation of a Solar Stirling Engine Operating Under Various Weather Conditions on Mars“. Journal of Solar Energy Engineering 126, Nr. 2 (01.05.2004): 812–18. http://dx.doi.org/10.1115/1.1687796.
Der volle Inhalt der QuelleDuan, Chen, Shui Ming Shu, Guo Zhong Ding und Ji Wei Yan. „Preliminary Design and Adiabatic Analysis of a 3kW Free Piston Stirling Engine“. Applied Mechanics and Materials 325-326 (Juni 2013): 277–82. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.277.
Der volle Inhalt der QuelleDologlonyan, Andrey V., Dmitriy S. Strebkov und Valeriy T. Matveenko. „Thermodynamic Characteristics of Hybrid Solar Microgas Turbine Plants under Tropical Climate“. Elektrotekhnologii i elektrooborudovanie v APK 2, Nr. 43 (2021): 20–35. http://dx.doi.org/10.22314/2658-4859-2021-68-2-20-35.
Der volle Inhalt der QuelleAdkins, Douglas R. „Design Considerations for Heat-Pipe Solar Receivers“. Journal of Solar Energy Engineering 112, Nr. 3 (01.08.1990): 169–76. http://dx.doi.org/10.1115/1.2930476.
Der volle Inhalt der QuelleValdès, L. C. „Competitive solar heat engines“. Renewable Energy 29, Nr. 11 (September 2004): 1825–42. http://dx.doi.org/10.1016/j.renene.2004.02.008.
Der volle Inhalt der QuelleReisz, Aloysius I. „To Go Beyond“. Mechanical Engineering 130, Nr. 11 (01.11.2008): 42–45. http://dx.doi.org/10.1115/1.2008-nov-2.
Der volle Inhalt der QuelleTailer, Peter. „Stirling Machines“. Energy Exploration & Exploitation 7, Nr. 4 (August 1989): 262–70. http://dx.doi.org/10.1177/014459878900700405.
Der volle Inhalt der QuelleTopgül, Tolga. „Design, Manufacturing, and Thermodynamic Analysis of a Gamma-type Stirling Engine Powered by Solar Energy“. Strojniški vestnik - Journal of Mechanical Engineering 68, Nr. 12 (04.01.2023): 757–70. http://dx.doi.org/10.5545/sv-jme.2022.368.
Der volle Inhalt der QuelleGeok Pheng, Liaw, Rosnani Affandi, Mohd Ruddin Ab Ghani, Chin Kim Gan und Jano Zanariah. „Stirling Engine Technology for Parabolic Dish-Stirling System Based on Concentrating Solar Power (CSP)“. Applied Mechanics and Materials 785 (August 2015): 576–80. http://dx.doi.org/10.4028/www.scientific.net/amm.785.576.
Der volle Inhalt der QuelleDissertationen zum Thema "Solar engines"
Gaitan, Carlos. „Rural electrification in Bolivia through solar powered Stirling engines“. Thesis, KTH, Energiteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148079.
Der volle Inhalt der QuelleDen här studien fokuserar på landsbygden i Bolivia. En by som antas ha 70 hushåll och en skola är det som ligger till grund för studien. Byn ska försörjas med el med hjälp av soldrivna Stirling motorer. En Stirling motor är en motor som drivs med en extern värmekälla. Denna värmekälla kan vara exempelvis biomassa eller annan bränsle. Modellen som tas fram i projektet beräknar elektricitetsbehovet för byn för två nivåer, ett lågt elbehov och ett högt elbehov. Genom att studera det totala elbehovet över dagen kan modellen beräkna fram en storlek för Stirling systemet. För att ge mer noggranna svar, krävs dock att forskning utförs i byn som ska försörjas. Dessutom krävs en mer noggrann information om de ingående parametrarna i modellen.
Clark, David Anthony. „High performance heat engines for solar and biomass applications“. Thesis, Queensland University of Technology, 1993. https://eprints.qut.edu.au/226903/1/T%28BE%26E%29%20375_Clark_1993.pdf.
Der volle Inhalt der QuelleTegeder, Troy. „Development of an efficient solar powered unmanned aerial vehicle with an onboard solar tracker /“. Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1723.pdf.
Der volle Inhalt der QuelleGohary, Mohamed Morsy Abdel Meguid Salama el. „Diesel engines and solar energy for electric and cooling applications“. [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973168242.
Der volle Inhalt der QuelleKheder, Abdul-Sameei Yaseen. „Starting high inertia, high friction loads from limited power sources“. Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184455.
Der volle Inhalt der QuelleNaddeo, Massimo. „Test and development of a solar-hybrid vehicle prototype and turbo-compressor model for automotive engines“. Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2205.
Der volle Inhalt der QuelleIn last decade, Hybrid Electric Vehicles (HEV) have emerged as real alternatives to engine-driven vehicles, in order to reduce fuel consumption and emissions.... [edited by author]
XIV n.s.
Howard, Dustin F. „Modeling, simulation, and analysis of grid connected dish-stirling solar power plants“. Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34832.
Der volle Inhalt der QuelleDentello, Rodrigo Orefise. „Estudo de geração de energia elétrica em motores stirling acionados por biogás e/ou energia solar /“. Guaratinguetá, 2017. http://hdl.handle.net/11449/151835.
Der volle Inhalt der QuelleCoorientadora: Eliana Vieira Canettieri
Coorientador: Antonio Wagner Forti
Banca: Nestor proenza Pérez
Banca: Ederaldo Godoy Junior
Resumo: O motor Stirling é um motor de combustão externa que opera com diferenças de temperaturas, produzindo trabalho mecânico e eletricidade. Esse tipo de motor opera em um ciclo fechado, que através do uso de uma fonte quente e uma fria, expande e comprime um fluido de trabalho (ar, hélio ou hidrogênio, dentre os mais comuns), fornecendo assim o movimento de um pistão. Pode operar com calor residual e também com a queima de qualquer tipo de combustível (gás natural, diesel, gasolina, etc). Essa tecnologia tem se destacado para o desenvolvimento de sistemas que operam com biocombustíveis (biogás e syngas) e com energias renováveis, como por exemplo, caso de uso de concentradores solares. Este trabalho tem como objetivo estudar as performances termodinâmica, econômica e ambiental de um sistema Stirling operando com sistema de alimentação a biogás e energia solar, aplicado para a geração de energia elétrica descentralizada. São realizados estudos dos aspectos termodinâmicos do ciclo Stirling, com foco no funcionamento e no trabalho do motor. São efetuadas análises técnicas do sistema operando com câmara de combustão a biogás e utilizando energia de concentrador solar parabólico. Em etapa final são analisados e comparados os aspectos econômicos e ambientais do sistema acionado por biogás e energia solar. Os resultados obtidos mostraram pela teoria de Schmidt uma eficiência do motor Stirling de 67%. Da análise econômica, fica evidente que um maior número de horas de operação corrobora ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The Stirling engine is an external combustion engine that operates at varying temperatures, producing mechanical work or electricity. This type of engine operates in a closed cycle, which through the use of a hot and cold source expands and compresses a working fluid (air, helium or hydrogen, among the most common), thus providing the movement of a piston. It can operate with residual heat and also with the burning of any type of fuel (natural gas, diesel, gasoline, etc.). This technology has been outstanding for the development of hybrid systems that operate with biofuels (biogas and syngas) and with renewable energies, as for example, case of use of solar concentrators. This work aims to study the thermodynamic, economic and environmental performances of a Stirling system operating with a biogas and solar energy supply system, applied for the generation of decentralized electric energy. Studies are carried out on the thermodynamic aspects of the Stirling cycle, focusing on the operation and work of the engine. Technical analysis of the system is carried out using a biogas combustion chamber and using parabolic solar concentrator energy. In the final stage are analyzed and compared the economic and environmental aspects of the system activated by biogas and solar energy. The results showed that through the thermodynamic analysis by the Schmidt theory, a Stirling engine efficiency of 67% was obtained. From the economic analysis, it is evident that a greater number of hours of operation corroborates with economic viability. As for the environmental aspects, the ecological efficiency value of the Stirling engine operating biogas is 98.02%. In the case of the solar system using concentrator to power the Stirling engine, the ecological efficiency indicates is about 98%. It is concluded that the use of renewable sources, allow good levels of efficiency of electric power ... (Complete abstract click electronic access below)
Mestre
McHugh, Megan. „Solar Powered Stirling Engine“. The University of Arizona, 2017. http://hdl.handle.net/10150/623462.
Der volle Inhalt der QuelleThis paper provides a study on the configuration of Stirling engines and the effect using a solar dish as a heat source on efficiency. The Stirling engine was based on the MIT 2.670 design - a Gamma configuration, low temperature differential Stirling engine. Temperature and speed were measured for the base model Stirling engine to determine the initial efficiency. Modifications were planned to add a parabolic mirror as a solar dish and compare the efficiency to the initial design, however, the completed solar Stirling engine testing and data collection is to be performed in the following summer. The work performed by the engine was to be calculated using the Schmidt formula to then find the power output. Results from the completion of this study would indicate how the solar dish effects the power output of the Stirling engine.
Ghaem, Sigarchian Sara. „Modeling and Analysis of a Hybrid Solar-Dish Brayton Engine“. Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104425.
Der volle Inhalt der QuelleBücher zum Thema "Solar engines"
Fujii, Iwane. From solar energy to mechanicalpower. Chur: Harwood Academic Publishers, 1990.
Den vollen Inhalt der Quelle findenFujii, Iwane. From solar energy to mechanical power. Chur: Harwood Academic Publishers, 1990.
Den vollen Inhalt der Quelle findenM, Savino Joseph, und United States. National Aeronautics and Space Administration., Hrsg. A program for advancing the technology of space concentrators. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Concentration of off-axis radiation by solar concentrators for space power. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenR, Secunde Richard, Lovely Ronald G und United States. National Aeronautics and Space Administration., Hrsg. Solar dynamic power for Space Station Freedom. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenDzhumanaliev, N. D. Vvedenie v prikladnui͡u︡ radiat͡s︡ionnui͡u︡ nebesnui͡u︡ mekhaniku. Frunze: Izd-vo "Ilim", 1986.
Den vollen Inhalt der Quelle findenM, Friefeld Jerry, und United States. National Aeronautics and Space Administration., Hrsg. Solar dynamic power system definition study: Final report. Canoga Park, Calif: Rocketdyne Division, Rockwell International Corporation, 1988.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Concentration of off-axis radiation by solar concentrators for space power. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenRöbke-Doerr, Peter. Energía solar: Construcción y montaje de equipos para aplicaciones eléctricas. Barcelona: Ediciones CEAC, 1996.
Den vollen Inhalt der Quelle findenShaltens, Richard K. Overview of the solar dynamic ground test demonstration program. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Solar engines"
Vos, A. „How to Unify Solar Energy Converters and Carnot Engines“. In Thermodynamic Optimization of Complex Energy Systems, 345–62. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4685-2_26.
Der volle Inhalt der QuelleBellanca, Nicolò, und Luca Pardi. „Risorse e popolazione umana“. In Studi e saggi, 21–45. Florence: Firenze University Press, 2020. http://dx.doi.org/10.36253/978-88-5518-195-2.06.
Der volle Inhalt der QuelleHafner, Manfred, Pier Paolo Raimondi und Benedetta Bonometti. „Low-Carbon Energy Strategies in MENA Countries“. In The Energy Sector and Energy Geopolitics in the MENA Region at a Crossroad, 175–261. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30705-8_4.
Der volle Inhalt der QuelleHayton, Mark. „Marine Electrification is the Future: A Tugboat Case Study“. In Lecture Notes in Civil Engineering, 868–79. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_77.
Der volle Inhalt der QuelleMcMordie, Robert K., Mitchel C. Brown und Robert S. Stoughton. „Stirling Engine Solar Power Systems“. In Solar Energy Fundamentals, 87–92. New York: Routledge, 2021. http://dx.doi.org/10.1201/9780203739204-11.
Der volle Inhalt der QuelleSaxena, Shakti, und Rahul. „Portable Solar Stirling Engine“. In Lecture Notes in Mechanical Engineering, 279–86. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1894-2_23.
Der volle Inhalt der QuelleKreider, Jan F. „Solar Energy Applications“. In Mechanical Engineers' Handbook, 663–701. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471777471.ch20.
Der volle Inhalt der QuelleHassan, Hamdy, und Tamer F. Megahed. „Solar Cell Modeling“. In Computing and Simulation for Engineers, 1–18. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003222255-1.
Der volle Inhalt der QuelleRoberts, Paul H. „The Solar Dynamo“. In The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate, 1–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79257-1_1.
Der volle Inhalt der QuelleMichel, H., und E. Melchior. „200 kW Stirling Engine for SSP Module; Solar Stirling Receiver Concepts“. In Solar Thermal Energy Utilization, 269–367. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-52340-3_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solar engines"
Archibald, John P. „Design and Construction of Solar Thermal Tile Systems for Stand-By Heating of Emergency Diesel Generators“. In ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1029.
Der volle Inhalt der QuelleDiver, Richard B., James E. Miller, Mark D. Allendorf, Nathan P. Siegel und Roy E. Hogan. „Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines“. In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99147.
Der volle Inhalt der QuelleHoltz, R. E., und K. L. Uherka. „Reliability Study of Stirling Engines for Solar-Dish/Heat Engine Systems“. In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9414.
Der volle Inhalt der QuelleZhang, Houcheng, Lanmei Wu und Guoxing Lin. „Performance Optimization and Parametric Analysis of a Class of Solar-Driven Heat Engines“. In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90409.
Der volle Inhalt der QuelleMurali Krishna, B., und J. M. Mallikarjuna. „Renewable Biodiesel From CSO: A Fuel Option for Diesel Engines“. In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99051.
Der volle Inhalt der QuelleHaviv, Shimry, Natali Revivo, Nimrod Kruger und Carmel Rotschild. „Luminescent solar power: Quantum separation between free-energy and heat for cost-effective base-load solar energy generation (Conference Presentation)“. In Photonic Heat Engines: Science and Applications II, herausgegeben von Richard I. Epstein, Denis V. Seletskiy und Mansoor Sheik-Bahae. SPIE, 2020. http://dx.doi.org/10.1117/12.2544885.
Der volle Inhalt der QuelleRizzo, Gianfranco, Cecilia Pisanti, Mario D'Agostino und Massimo Naddeo. „Driver Intention Analysis for a Through-the-Road Solar Hybridized Car“. In 11th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-24-0079.
Der volle Inhalt der QuelleStone, Kenneth W., Eric Leingang, Gerry Rodriguez, Jonathan Paisley, Jean-Paul Nguyen, Dr Thomas Mancini und Hans Nelving. „Performance of the SES/Boeing Dish Stirling System“. In ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-113.
Der volle Inhalt der QuelleCoraggio, Gaetano, Gianfranco Rizzo, Cecilia Pisanti und Adolfo Senatore. „Energy Management and Control of a Moving Solar Roof for a Vehicle“. In 10th International Conference on Engines & Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-24-0072.
Der volle Inhalt der QuelleKalathakis, C., N. Aretakis, I. Roumeliotis, A. Alexiou und K. Mathioudakis. „Investigation of Different Solar Hybrid Gas Turbines and Exploitation of Rejected Sun Power“. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57700.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Solar engines"
Renk, K., Y. Jacques, C. Felts und A. Chovit. Holographic Solar Energy Concentrators for Solar Thermal Rocket Engines. Fort Belvoir, VA: Defense Technical Information Center, Mai 1988. http://dx.doi.org/10.21236/ada198807.
Der volle Inhalt der QuelleThomas, Tucker und Cowell. PR-283-10204-R01 Prevent Variable Guide Vane Lock-up - Solar Gas Turbines with Intermittent Operation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2016. http://dx.doi.org/10.55274/r0010856.
Der volle Inhalt der QuelleBoehm, R. Maximum performance of solar heat engines: discussion of thermodynamic availability and other second law considerations and their implications. Office of Scientific and Technical Information (OSTI), September 1985. http://dx.doi.org/10.2172/5244073.
Der volle Inhalt der QuelleCourtright, E. CRADA with EPRI, Allied Signal, Solar Turbines, Howmet Corporation and Pacific Northwest National Laboratory (PNL-079): Innovative Multilayer Barrier Coatings for Turbine Engines. Office of Scientific and Technical Information (OSTI), März 2000. http://dx.doi.org/10.2172/770367.
Der volle Inhalt der QuelleTaylor. L51755 Development and Testing of an Advanced Technology Vibration Transmission. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 1996. http://dx.doi.org/10.55274/r0010124.
Der volle Inhalt der QuelleCowell. PR-283-10214-R01 Improved Part Load Efficiency of Solar DLE Units. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 2013. http://dx.doi.org/10.55274/r0010792.
Der volle Inhalt der QuelleAuthor, Not Given. Solar dish engine. Office of Scientific and Technical Information (OSTI), Januar 2009. http://dx.doi.org/10.2172/1216668.
Der volle Inhalt der QuelleAuthor, Not Given. Solar dish/engine systems. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/654075.
Der volle Inhalt der QuelleCooke. L51783 100000 Hour Design Life of Turbo Compressor Packages. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 1998. http://dx.doi.org/10.55274/r0010340.
Der volle Inhalt der QuelleStearns, J. Stirling engine alternatives for the terrestrial solar application. Office of Scientific and Technical Information (OSTI), Oktober 1985. http://dx.doi.org/10.2172/5172329.
Der volle Inhalt der Quelle