Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Solar energy use“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Solar energy use" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Solar energy use"
Becenen, Ismail, Umut Kuzucu und Abdullah Bilekkaya. „Investigation of Solar Energy Use in Agricultural Irrigation“. International Journal of Science and Research (IJSR) 11, Nr. 10 (05.10.2022): 937–43. http://dx.doi.org/10.21275/sr221018042201.
Der volle Inhalt der QuelleFarangiz, Muxamadiyeva, und Xolmurodov Maxmatkarim Pattayevich. „INCREASING THE ENERGY EFFICIENCY OF BUILDINGS USING SOLAR ENERGY“. International Journal of Advance Scientific Research 03, Nr. 06 (01.06.2023): 342–45. http://dx.doi.org/10.37547/ijasr-03-06-55.
Der volle Inhalt der QuelleFeng, Jingshang. „Efficient use of solar energy“. International Journal of Energy 1, Nr. 1 (01.12.2022): 18–21. http://dx.doi.org/10.54097/ije.v1i1.3229.
Der volle Inhalt der QuelleRao, G. L., und V. M. K. Sastri. „Land use and solar energy“. Habitat International 11, Nr. 3 (Januar 1987): 61–75. http://dx.doi.org/10.1016/0197-3975(87)90020-8.
Der volle Inhalt der QuelleMacKay, David J. C. „Solar energy in the context of energy use, energy transportation and energy storage“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, Nr. 1996 (13.08.2013): 20110431. http://dx.doi.org/10.1098/rsta.2011.0431.
Der volle Inhalt der QuelleKumar, Laveet, Jahanzaib Soomro, Hafeez Khoharo und Mamdouh El Haj Assad. „A comprehensive review of solar thermal desalination technologies for freshwater production“. AIMS Energy 11, Nr. 2 (2023): 293–318. http://dx.doi.org/10.3934/energy.2023016.
Der volle Inhalt der QuelleAl-wahid, Wisam A. Abd, Hussein Awad Kurdi Saad, Zahraa Hamzah Hasan und Kamaruzzaman Sopian. „Experimental study of the performance of hemispherical solar still with optimum value of rocks as heat transfer enhancers“. AIMS Energy 10, Nr. 4 (2022): 885–99. http://dx.doi.org/10.3934/energy.2022040.
Der volle Inhalt der QuelleHuerta Mascotte, Eduardo, Ruth Ivonne Mata Chávez, Julián Moisés Estudillo Ayala, Juan Manuel Sierra Hernández, Igor Guryev und Rocío Alfonsina Lizárraga Morales. „Solar cell characteristics study for solar energy efficient use“. Acta Universitaria 26, NE-1 (März 2016): 30–34. http://dx.doi.org/10.15174/au.2016.868.
Der volle Inhalt der QuelleAbdullayev, J. S. „On the use of solar energy in Azerbaijan“. Azerbaijan Oil Industry, Nr. 03 (15.03.2023): 37–43. http://dx.doi.org/10.37474/0365-8554/2023-3-37-43.
Der volle Inhalt der QuelleLewis, N. S. „Toward Cost-Effective Solar Energy Use“. Science 315, Nr. 5813 (09.02.2007): 798–801. http://dx.doi.org/10.1126/science.1137014.
Der volle Inhalt der QuelleDissertationen zum Thema "Solar energy use"
Van, Zyl GHC. „Solar energy for domestic use“. Thesis, Cape Technikon, 2000. http://hdl.handle.net/20.500.11838/884.
Der volle Inhalt der QuelleThe demand for pool heating has increased dramatically over the last few years. This is ascribed to the idea that a swimming pool is expensive and can only be used for four months of the year. Therefore, a need for a relatively inexpensive solar heating system, capable of heating pool water to comfortable temperatures for an extended period, does exist. The least expensive solar heating system for swimming pool heating on the market in South Africa is in the order of R 11000. This is a fixed system, usually mounted on the roof of a house. In order to ensure the safety of minors, a safety net or sail must be installed. This is an additional cost, which approximates R1500, yielding a total cost for safety and heating in the order of R 12500. Copper pipes packed in black material are utilised in these conventional heating systems, and it is the cost of this good heat conductor that makes these units expensive. In this study an alternative pool heating system constructed of PVC was investigated. The system is designed to be flexible, mobile, act as a safety mechanism and absorbs the maximum amount of solar energy available. Dark blue material as opposed to black PVC was selected for aesthetic reasons at the expense of maximum efficiency. The material strength was tested as well as the strength of adhesion. The influence of factors such as exposure to the sun and the effect of water containing chlorine and acid on the material were evaluated. Also, various means of channelling the water through the system for increased efficiency was investigated. A pilot model was constructed and its performance evaluated. It has been concluded that the alternative approach provides effective heating at a lower cost than current systems. Also, the durability of the design was found to be acceptable.
Hedenberg, Ola, und John Wallander. „Solar energy for domestic use in southern Brazil“. Thesis, Halmstad University, School of Business and Engineering (SET), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-1603.
Der volle Inhalt der QuelleAlmost all the domestic water in Brazil is heated with an electrical heater directly by the end consumer. A typical heater has an effect of 5 400 W and when the whole population takes a shower in the evening it causes big peaks in the electrical grid. This consumption peaks could be reduced by simple and cheap solar collector system.
Different system technologies and the most important parts of a solar collector system are described in the technical background. In Lajeado almost every system is a self-circulated system because of the simplicity and the lower costs.
Solar cooling as an alternative to the vapor compressor chillers has been studied. The cooling demand is biggest when the sun shines; this makes the sun perfect as a source to cooling. The ab- and adsorption chillers as a method in the future have been discussed in this paper; however it has only been studied briefly because small scale chillers using the technology can not be found on the market yet.
A number of different systems have been dimensioned after the existing conditions of Lajeado, the town where the project has been carried out in. Prizes and costs for both installation and materials come from the local solar collector supplier. With this as a background; several systems for various hot water demands has been dimensioned and costs and repayment time been calculated. A study of all the systems shows that, if the hot water demand increases and the systems get bigger, the profitability grows and the repayment time becomes shorter, down to three years. In almost every case the repayment time was under eight years, which makes solar heating attractive and the profit is good for the southern Brazil.
Ek, Ludvig, und Tim Ottosson. „Optimization of energy storage use for solar applications“. Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149305.
Der volle Inhalt der QuelleNilsson, Nina. „Increased use of solar energy in commercial buildings by integrating energy storage“. Thesis, KTH, Mark- och vattenteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190614.
Der volle Inhalt der QuelleBurashid, Khalid Ahmed. „Solar energy in Bahrain : prospects and potential use in desalination“. Thesis, University of the West of Scotland, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262640.
Der volle Inhalt der QuelleDeğirmencioğlu, Can İlken Zafer. „The Use Of Cell Polyurethane Foams In Air-Type Solar Collectors As The Heat Absorbing Element/“. [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/makinamuh/T000366.pdf.
Der volle Inhalt der QuelleKeywords: Solar energy, solar collectors, solar energy systems, air heating, polyurethane foam. Includes bibliographical references (leaves.60-62).
Wang, Jianjun. „Modelling surface solar energy by use of landsat thematic mapper data and digital elevation models“. Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336667.
Der volle Inhalt der QuelleYousif, Kamil Mansoor. „Studies of degradation modes of molybdenum black coatings in relation to their use as solar selective absorbers“. Thesis, Brunel University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333363.
Der volle Inhalt der QuelleTadlock, James Eric. „A GIS analysis on possible photovoltaic cell use for energy reduction during peak hours in Huntington, West Virginia“. [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=962.
Der volle Inhalt der QuelleKhan, Fahad. „Spherical Tanks for Use in Thermal Energy Storage Systems“. Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/187.
Der volle Inhalt der QuelleBücher zum Thema "Solar energy use"
Daniels, Farrington. Direct use of the Sun's energy. Bronx, New York: Ishi Press International, 2010.
Den vollen Inhalt der Quelle findenKodis, Michelle. Turn me on: 100 easy ways to use solar energy. Layton, Utah: Gibbs Smith, 2009.
Den vollen Inhalt der Quelle findenSheila, Blum, Holtz Michael J und International Energy Agency. Solar Heating and Cooling Programme. Task VIII, Hrsg. Design tool selection and use. Washington, D.C: U.S. G.P.O., 1988.
Den vollen Inhalt der Quelle findenS, Mehos Mark, und National Renewable Energy Laboratory (U.S.), Hrsg. Enabling greater penetration of solar power via the use of CSP with thermal energy storage. Golden, CO: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenThornton, Mark Edward. Object-orientated simulation of passive solar energy use in buildings. Birmingham: University of Birmingham, 1997.
Den vollen Inhalt der Quelle finden1931-, Branover Herman, und Israel. Miśrad ha-energyah ṿeha-tashtit. Agaf meḥḳar u-fituaḥ., Hrsg. Techno-economical study of solar energy technologies in Russia and in Israel and development of conceptions for the use of solar energy in various fields. [Jerusalem]: State of Israel, Ministry of Energy and Infrastructure, Research and Development Division, 1993.
Den vollen Inhalt der Quelle findenDhingra, K. K. Efficient use of solar energy for crop production: Final technical report of the PL-480 project. Ludhiana, Punjab, India: Dept. of Agronomy, Punjab Agricultural University, 1987.
Den vollen Inhalt der Quelle findenMa, Zhiwen. Advanced supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems: Preprint. Golden, CO]: National Renewable Energy Laboratory, 2011.
Den vollen Inhalt der Quelle findenMacknick, Jordan. Overview of opportunities for co-location of solar energy technologies and vegetation. Golden, CO: National Renewable Energy Laboratory, 2013.
Den vollen Inhalt der Quelle findenSibikin, Mihail. Alternative energy sources. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1862890.
Der volle Inhalt der QuelleBuchteile zum Thema "Solar energy use"
Girtan, Mihaela. „Energy Conversion or Direct Use?“ In Future Solar Energy Devices, 97–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67337-0_5.
Der volle Inhalt der QuelleMorgan, Lynette. „The greenhouse environment and energy use.“ In Hydroponics and protected cultivation: a practical guide, 30–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0003.
Der volle Inhalt der QuelleMorgan, Lynette. „The greenhouse environment and energy use.“ In Hydroponics and protected cultivation: a practical guide, 30–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0030.
Der volle Inhalt der QuelleBhalla, Vishal, Vikrant Khullar, Harjit Singh und Himanshu Tyagi. „Solar Thermal Energy: Use of Volumetric Absorption in Domestic Applications“. In Applications of Solar Energy, 99–112. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7206-2_6.
Der volle Inhalt der QuelleEffelsberg, H., und B. Barbknecht. „The Use of Thermal Solar Energy to Treat Waste Materials“. In Solar Thermal Energy Utilization, 413–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-52342-7_8.
Der volle Inhalt der QuelleJusti, Eduard W. „The Basis for the Use of Solar Energy“. In A Solar—Hydrogen Energy System, 89–121. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1781-4_5.
Der volle Inhalt der QuelleSfintes, Anda-Ioana, und Radu Sfintes. „Rethinking Architectural Spaces for Solar Energy Better Use“. In Springer Proceedings in Energy, 487–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55757-7_35.
Der volle Inhalt der QuelleMotsamai, Oboetswe, und Kealeboga Kebaitse. „Use of concentrating solar technology on short solar chimney power plant“. In Advances in Energy and Environment Research, 27–32. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315212876-7.
Der volle Inhalt der QuelleBaumgartner, F. P., M. Simon und R. Burkhardt. „Tino - A Solar Car for Daily Use“. In Tenth E.C. Photovoltaic Solar Energy Conference, 1409–10. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_350.
Der volle Inhalt der QuelleSchrag, T., M. Ehrenwirth, T. Ramm, A. Vannahme und C. Trinkl. „Solar Energy Use in District Heating Networks“. In ICREEC 2019, 3–10. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5444-5_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Solar energy use"
Kumar, Alok, Ashish K. Singhal, Subinoy Roy, Mohit Kumar, MD Nadir und Namrata Talegaonkar. „Enhancing Home Energy Use with Solar Panels and Battery Technology“. In 2024 IEEE 3rd International Conference on Electrical Power and Energy Systems (ICEPES), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icepes60647.2024.10653466.
Der volle Inhalt der QuelleKostuk, Raymond K., Jose Castillo, Juan M. Russo und Glenn Rosenberg. „Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells“. In Solar Energy + Applications, herausgegeben von Martha Symko-Davies. SPIE, 2007. http://dx.doi.org/10.1117/12.736542.
Der volle Inhalt der QuelleOreski, Gernot, und Kenneth Möller. „Qualification of polymeric components for use in PV modules“. In SPIE Solar Energy + Technology, herausgegeben von Neelkanth G. Dhere, John H. Wohlgemuth und Kevin W. Lynn. SPIE, 2011. http://dx.doi.org/10.1117/12.893451.
Der volle Inhalt der QuelleBystronski, Yasmin de A., Betina T. Martau und Waldo I. Costa-Neto. „Use of Light Pipe and Electronic Heliostat for Lighting of Underground Areas in Porto Alegre“. In American Solar Energy Society National Solar Conference 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/solar.2017.01.03.
Der volle Inhalt der QuelleFranklin, J. B., G. B. Smith und A. E. Earp. „A critical hurdle to widespread use of polymer based luminescent solar concentrators“. In SPIE Solar Energy + Technology, herausgegeben von Neelkanth G. Dhere, John H. Wohlgemuth und Kevin W. Lynn. SPIE, 2013. http://dx.doi.org/10.1117/12.2022802.
Der volle Inhalt der QuelleOkafor, Gabriel, und Hessam Taherian. „Multi-Generation Modeling and Building Energy use optimization based on a Natural Gas driven Internal Combustion Engine“. In American Solar Energy Society National Solar Conference 2018. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/solar.2018.01.08.
Der volle Inhalt der QuelleMiller, David C., und John H. Wohlgemuth. „Examination of a junction-box adhesion test for use in photovoltaic module qualification“. In SPIE Solar Energy + Technology, herausgegeben von Neelkanth G. Dhere und John H. Wohlgemuth. SPIE, 2012. http://dx.doi.org/10.1117/12.929793.
Der volle Inhalt der QuelleStephens, Kyle, und J. Roger P. Angel. „Comparison of collection and land use efficiency for various solar concentrating field geometries“. In SPIE Solar Energy + Technology, herausgegeben von Kaitlyn VanSant und Adam P. Plesniak. SPIE, 2012. http://dx.doi.org/10.1117/12.930240.
Der volle Inhalt der QuelleReicher, David W., Roberto Christian, Patrick Davidson und Stanley Z. Peplinski. „Use of multiple DC magnetron deposition sources for uniform coating of large areas“. In SPIE Solar Energy + Technology, herausgegeben von Alan E. Delahoy und Louay A. Eldada. SPIE, 2009. http://dx.doi.org/10.1117/12.824882.
Der volle Inhalt der QuelleMakiwa, G., G. Katumba und L. Olumekor. „Synthesis and optical characterization of C-SiO 2 and C-NiO sol-gel composite films for use as selective solar absorbers“. In Solar Energy + Applications, herausgegeben von Benjamin K. Tsai. SPIE, 2008. http://dx.doi.org/10.1117/12.792654.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Solar energy use"
Salonvaara, Mikael, und André Desjarlais. The impact of the solar absorption coefficient of roof and wall surfaces on energy use and peak demand. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541650886.
Der volle Inhalt der QuelleMargolis, R., und J. Zuboy. Nontechnical Barriers to Solar Energy Use: Review of Recent Literature. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/893639.
Der volle Inhalt der QuelleJackson, Allison, Kate Doubleday, Brittany Staie, Allison Perna, Mariel Sabraw, Liz Voss, Apolonia Alvarez, Byron Kominek und Jordan Macknick. County Land-Use Regulations for Solar Energy Development in Colorado. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2339555.
Der volle Inhalt der QuelleSengupta, M., S. Kurtz, A. Dobos, S. Wilbert, E. Lorenz, D. Renné, D. Myers, S. Wilcox, P. Blanc und R. Perez. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications. IEA Solar Heating and Cooling Programme, Februar 2015. http://dx.doi.org/10.18777/ieashc-task46-2015-0001.
Der volle Inhalt der QuelleCole, Wesley, und Anthony Lopez. Solar Siting and Land-Use in Decarbonized Energy Systems: Final Technical Report. Office of Scientific and Technical Information (OSTI), November 2024. https://doi.org/10.2172/2479267.
Der volle Inhalt der QuelleBaker, Nicholas, Rafaella Belmonte Monteiro, Alessia Boccalatte, Karine Bouty, Johannes Brozovsky, Cyril Caliot, Rafael Campamà Pizarro et al. Identification of existing tools and workflows for solar neighborhood planning. Herausgegeben von Jouri, Kanters. IEA SHC Task 63, Juni 2022. http://dx.doi.org/10.18777/ieashc-task63-2022-0001.
Der volle Inhalt der QuelleSengupta, Manajit, Aron Habte, Christian Gueymard, Stefan Wilbert und Dave Renné, Hrsg. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition. IEA SHC Task 46, Dezember 2017. http://dx.doi.org/10.18777/ieashc-task46-2017-0001.
Der volle Inhalt der QuelleSengupta, Manajit, Aron Habte, Christian Gueymard, Stefan Wilbert und Dave Renne. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1411856.
Der volle Inhalt der QuelleSengupta, Manajit, Aron Habte, Stefan Wilbert, Christian Gueymard und Jan Remund. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Third Edition. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1778700.
Der volle Inhalt der QuelleSengupta, Manajit, Aron Habte, Stefan Wilbert, Christian Gueymard, Jan Remund, Elke Lorenz, Wilfried van Sark und Adam Jensen. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Fourth Edition. Office of Scientific and Technical Information (OSTI), September 2024. http://dx.doi.org/10.2172/2448063.
Der volle Inhalt der Quelle