Dissertationen zum Thema „Soil structure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Soil structure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Grieger, Gayle. „The effect of mineralogy and exchangeable magnesium on the dispersive behaviour of weakly sodic soils /“. Title page, table of contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phg8478.pdf.
Der volle Inhalt der QuelleCorneo, Paola Elisa. „Understanding soil microbial community dynamics in vineyard soils: soil structure, climate and plant effects“. Doctoral thesis, country:CH, 2013. http://hdl.handle.net/10449/23970.
Der volle Inhalt der QuelleBrandsma, Richard Theodorus. „Soil conditioner effects on soil erosion, soil structure and crop performance“. Thesis, University of Wolverhampton, 1997. http://hdl.handle.net/2436/99094.
Der volle Inhalt der QuelleLi, Xu. „Dual-porosity structure and bimodal hydraulic property functions for unsaturated coarse granular soils /“. View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202009%20LI.
Der volle Inhalt der QuelleGandomzadeh, Ali. „Dynamic soil-structure interaction : effect of nonlinear soil behavior“. Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00648179.
Der volle Inhalt der QuelleChen, Chien-chang. „Shear induced evolution of structure in water-deposited sand specimens“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/22724.
Der volle Inhalt der QuelleRouaiguia, Ammar. „Strength of soil-structure interfaces“. Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/26883.
Der volle Inhalt der QuelleMiller, Kendall Mar 1958. „INTERPRETIVE SCHEME FOR MODELING THE SPATIAL VARIATION OF SOIL PROPERTIES IN 3-D (AUTOCORRELATION, STOCHASTIC, PROBABILITY)“. Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276981.
Der volle Inhalt der QuelleSribalaskandarajah, Kandiah. „A computational framework for dynamic soil-structure interaction analysis /“. Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10180.
Der volle Inhalt der QuelleNelson, Paul Netelenbos. „Organic matter in sodic soils : its nature, decomposition and influence on clay dispersion“. Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phn4281.pdf.
Der volle Inhalt der QuelleGusli, Sikstus. „Effect of methods of wetting and rainfall characteristics on crusting and hardsetting of a red-brown earth“. Title page, abstract and table of contents only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phg982.pdf.
Der volle Inhalt der QuelleWhite, Thomas Leslie Carleton University Dissertation Geology. „Cryogenic alteration of a frost susceptible soil“. Ottawa, 1992.
Den vollen Inhalt der Quelle findenDuval, Jean. „Assessing porosity characteristics as indicators of compaction in a clay soil“. Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59275.
Der volle Inhalt der QuelleThe tests used were: total porosity as calculated from densimeter readings and from soil cores; structural porosity; water desorption characteristics; and soil profile examination. These tests were performed in three layers of 20 cm and evaluation was based on their practicality and their ability to differentiate between treatments and to correlate with corn yield.
The results confirm that total porosity is a poor indicator of compaction in the subsoil. In soil profile assessments, ped descriptions were preferable to examination of pores. Water content and saturation deficit at $-$4.0 and $-$100 kPa were the best indicators of treatments and plant response.
Juyal, Archana. „Effect of soil structure on temporal and spatial dynamics of bacteria“. Thesis, Abertay University, 2015. https://rke.abertay.ac.uk/en/studentTheses/2c7e4706-3fd5-4a1f-af84-67134a2664ed.
Der volle Inhalt der QuellePitilakis, Dimitris. „Soil-structure interaction modeling using equivalent linear soil behavior in the substructure method“. Châtenay-Malabry, Ecole centrale de Paris, 2006. http://www.theses.fr/2006ECAP1067.
Der volle Inhalt der QuelleA numerical procedure, coded into a numerical code (MISS3D-EqL), is developed to accommodate for the effects of the nonlinear soil behavior on the soil-structure interaction (SSI) using an equivalent linear approach. Equivalent linear behavior is assumed for the soil, while the response of the structure to the ground shaking and its effects on the soil are properly taken into account using the substructure method. The proposed procedure is validated against other numerical software and experimental means, such as shaking table and centrifuge tests. The effects of the equivalent linear soil behavior on the soil-structure system response are clearly demonstrated by analyses of representative case studies. A recursive analysis of typical soil profiles and infrastructures is performed to reveal the further softening of the system and the increased energy dissipation, compared to the linear case, due to the equivalent linear soil behavior. Special emphasis is given to the estimation of the foundation dynamic impedance functions. Dynamic stiffness and radiation dashpot coefficients are estimated for typical footings resting on typical soil profiles with equivalent linear behavior. The effects of the nonlinear soil behavior on the dynamic coefficient are shown compared to the linear elastic case. The dynamic stiffness coefficient decreases with increasing input acceleration amplitude, with decreasing soil shear wave velocity and with decreasing soil shear modulus, while it depends on the frequency content of the earthquake. The radiation dashpot coefficient is unaffected by the nonlinear soil behavior for most practical applications
García, García Julio Abraham. „Reduction of seismically induced structural vibrations considering soil-structure interaction“. [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969246390.
Der volle Inhalt der QuelleRahgozar, Mohammad Ali Carleton University Dissertation Engineering Civil. „Semismic soil-structure interaction analysis of structural base shear amplification“. Ottawa, 1993.
Den vollen Inhalt der Quelle findenNieto, ferro Alex. „Nonlinear Dynamic Soil-Structure Interaction in Earthquake Engineering“. Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2013. http://www.theses.fr/2013ECAP0006/document.
Der volle Inhalt der QuelleThe present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter subdomain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions
Dinel, H. (Henri) 1950. „The influence of soil organic matter components on the aggregation and structural stability of a lacustrine silty clay /“. Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74306.
Der volle Inhalt der QuelleBarzegar, Abdolrahman. „Structural stability and mechanical strength of salt-affected soils“. Title page, contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phb296.pdf.
Der volle Inhalt der QuelleLöfkvist, John. „Modifying soil structure using plant roots /“. Uppsala : Dept. of Soil Sciences, Swedish University of Agricultural Sciences, 2005. http://epsilon.slu.se/200560.pdf.
Der volle Inhalt der QuelleWarnakulasuriya, Hapuhennedige Surangith. „Soil structure interaction of buried pipes“. Thesis, University of East London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286607.
Der volle Inhalt der QuelleLees, Andrew Steven. „Soil/structure interaction of temporary roadways“. Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324808.
Der volle Inhalt der QuelleFairfield, Charles Alexander. „Soil-structure interaction in arch bridges“. Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/13809.
Der volle Inhalt der QuelleTaherzadeh, Reza. „Seismic soil-pile group-structure interaction“. Châtenay-Malabry, Ecole centrale de Paris, 2008. http://www.theses.fr/2008ECAP1096.
Der volle Inhalt der QuelleDespite the significant progress in simple engineering design of surface footing with considering the soil-structure interaction (SSI), there is still a need of the same procedure for the pile group foundation. The main approach to solve this strongly coupled problem is the use of full numerical models, taking into account the soil and the piles with equal rigor. This is however a computationally very demanding approach, in particular for large numbers of piles. The originality of this thesis is using an advanced numerical method with coupling the existing software MISS3D based on boundary element (BE), green's function for the stratified infinite visco-elastic soil and the matlab toolbox SDT based on finite element (FE) method to modeling the foundation and the superstructure. After the validation of this numerical approach with the other numerical results published in the literature, the leading parameters affecting the impedance and the kinematic interaction have been identified. Simple formulations have then been derived for the dynamic stiffness matrices of pile groups foundation subjected to horizontal and rocking dynamic loads for both floating piles in homogeneous half-space and end-bearing piles. These formulations were found using a large data base of impedance matrix computed by numerical FE-BE model. These simple approaches have been validated in a practical case. A modified spectral response is then proposed with considering the soil-structure interaction effect
Ritter, Stefan. „Experiments in tunnel-soil-structure interaction“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273891.
Der volle Inhalt der QuelleKhalili, Tehrani Payman. „Analysis and modeling of soil-structure interaction in bridge support structures“. Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1925776151&sid=5&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleFeeney, Deborah Siobhan. „The influence of fungi upon soil structure and soil water relations“. Thesis, Abertay University, 2004. https://rke.abertay.ac.uk/en/studentTheses/2a92d2fc-b3c5-456f-8b9a-e406bd78ee84.
Der volle Inhalt der QuelleAlyagshi, Eilouch Mohamed Nazih. „A mixed method for transient analysis of structures including soil-structure interaction /“. The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487264603218809.
Der volle Inhalt der QuelleRomanel, Celso. „A global-local approach for dynamic soil-structure interaction analysis of deeply embedded structures in a layered medium“. Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184762.
Der volle Inhalt der QuelleBalendra, Surendran. „Numerical modeling of dynamic soil-pile-structure interaction“. Online access for everyone, 2005. http://www.dissertations.wsu.edu/Thesis/Fall2005/s%5Fbalendra%5F120705.pdf.
Der volle Inhalt der QuelleWick, Abbey Foster. „Soil aggregate and organic matter dynamics in reclaimed mineland soils“. Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1400961671&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Der volle Inhalt der QuelleYogendrakumar, Muthucumarasamy. „Dynamic soil-structure interaction : theory and verification“. Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29222.
Der volle Inhalt der QuelleApplied Science, Faculty of
Civil Engineering, Department of
Graduate
Sun, Hepn Wing. „Ground deformation mechanisms for soil-structure interaction“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303931.
Der volle Inhalt der QuelleDavid, Thevaneyan Krishta David. „Integral bridges: modelling the soil-structure interaction“. Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581881.
Der volle Inhalt der QuelleDewsbury, Jonathan J. „Numerical modelling of soil-pile-structure interaction“. Thesis, University of Southampton, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582152.
Der volle Inhalt der QuelleZolghadr, Zadeh Jahromi Hamid. „Partitioned analysis of nonlinear soil-structure interaction“. Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512070.
Der volle Inhalt der QuelleTaunton, Paul R. „Centrifuge modelling of soil/masonry structure interaction“. Thesis, Cardiff University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244112.
Der volle Inhalt der QuelleCallaway, Phillip Arthur. „Soil-structure interaction in masonry arch bridges“. Thesis, University of Sheffield, 2007. http://etheses.whiterose.ac.uk/3036/.
Der volle Inhalt der QuelleWhite, William Patrick. „Soil moisture, fire, and tree community structure“. Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1301936875.
Der volle Inhalt der QuellePang, Sydney Carleton University Dissertation Engineering Civil. „Soil-structure interaction in discontinuous shear zones“. Ottawa, 1989.
Den vollen Inhalt der Quelle findenMaterechera, Simeon Albert. „Generation of soil structure by plant roots“. Adelaide Thesis (Ph.D.) -- University of Adelaide, Department of Soil Science, 1993. http://hdl.handle.net/2440/21654.
Der volle Inhalt der QuelleThesis (Ph.D.)--University of Adelaide, Dept. of Soil Science, Waite Agricultural Research Institute, 1994
Elshesheny, Ahmed. „Dynamic soil-structure interaction of reinforced concrete buried structures under the effect of dynamic loads using soil reinforcement new technologies. Soil-structure interaction of buried rigid and flexible pipes under geogrid-reinforced soil subjected to cyclic loads“. Thesis, University of Bradford, 2019. http://hdl.handle.net/10454/18312.
Der volle Inhalt der QuelleGovernment of Egypt
Aldaikh, Hesham S. H. „Discrete models for the study of dynamic structure-soil-structure interaction“. Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633205.
Der volle Inhalt der QuelleZinn, Yuri Lopes. „Textural, mineralogical and structural controls on soil organic carbon retention in the Brazilian Cerrados“. Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1131381122.
Der volle Inhalt der QuelleSoyoz, Serdar. „Effects Of Soil Structure Interaction And Base Isolated Systems On Seismic Performance Of Foundation Soils“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605119/index.pdf.
Der volle Inhalt der QuellePark, Jin Young. „A critical assessment of moist tamping and its effect on the initial and evolving structure of dilatant triaxial specimens“. Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/23949.
Der volle Inhalt der QuelleO'Brien, Eugene M. „Soil morphology and potentiometric surface relationship in an East Central Indiana toposequence“. Virtual Press, 2000. http://liblink.bsu.edu/uhtbin/catkey/1164849.
Der volle Inhalt der QuelleDepartment of Natural Resources and Environmental Management
Reeve, Jennifer Rose. „Soil quality, microbial community structure, and organic nitrogen uptake in organic and conventional farming systems“. Online access for everyone, 2007. http://www.dissertations.wsu.edu/Dissertations/Summer2007/j_reeve_071207.pdf.
Der volle Inhalt der QuelleSolomon-Wisdom, Grace Oyiza. „The effect of in situ spatial heterogeneity of lead in soil on plant uptake“. Thesis, University of Sussex, 2015. http://sro.sussex.ac.uk/id/eprint/54284/.
Der volle Inhalt der Quelle