Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Soil nutrient“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Soil nutrient" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Soil nutrient"
Thomson, V. P., und M. R. Leishman. „Survival of native plants of Hawkesbury Sandstone communities with additional nutrients: effect of plant age and habitat“. Australian Journal of Botany 52, Nr. 2 (2004): 141. http://dx.doi.org/10.1071/bt03047.
Der volle Inhalt der QuelleSeman-Varner, R., R. McSorley und R. N. Gallaher. „Soil nutrient and plant responses to solarization in an agroecosystem utilizing an organic nutrient source“. Renewable Agriculture and Food Systems 23, Nr. 2 (27.05.2008): 149–54. http://dx.doi.org/10.1017/s1742170507002001.
Der volle Inhalt der QuelleMoore, James A., Mark J. Kimsey, Mariann Garrison-Johnston, Terry M. Shaw, Peter Mika und Jaslam Poolakkal. „Geologic Soil Parent Material Influence on Forest Surface Soil Chemical Characteristics in the Inland Northwest, USA“. Forests 13, Nr. 9 (27.08.2022): 1363. http://dx.doi.org/10.3390/f13091363.
Der volle Inhalt der QuelleMa, Qifu, Zed Rengel und Terry Rose. „The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in Mediterranean-type environments: a review“. Soil Research 47, Nr. 1 (2009): 19. http://dx.doi.org/10.1071/sr08105.
Der volle Inhalt der QuelleComerford, N. B., W. P. Cropper, Jr., Hua Li, P. J. Smethurst, K. C. J. Van Rees, E. J. Jokela, H. Adégbidi und N. F. Barros. „Soil supply and nutrient demand (SSAND): A general nutrient uptake model and an example of its application to forest management“. Canadian Journal of Soil Science 86, Nr. 4 (01.08.2006): 655–73. http://dx.doi.org/10.4141/s05-112.
Der volle Inhalt der QuelleRobson, AD, NE Longnecker und LD Osborne. „Effects of heterogeneous nutrient supply on root growth and nutrient uptake in relation to nutrient supply on duplex soils“. Australian Journal of Experimental Agriculture 32, Nr. 7 (1992): 879. http://dx.doi.org/10.1071/ea9920879.
Der volle Inhalt der QuelleEntry, James A., und William H. Emmingham. „Influence of forest age on nutrient availability and storage in coniferous soils of the Oregon Coast Range“. Canadian Journal of Forest Research 25, Nr. 1 (01.01.1995): 114–20. http://dx.doi.org/10.1139/x95-014.
Der volle Inhalt der QuelleWibiralske, Anne W., Roger Earl Latham und Arthur H. Johnson. „A biogeochemical analysis of the Pocono till barrens and adjacent hardwood forest underlain by Wisconsinan and Illinoian till in northeastern Pennsylvania“. Canadian Journal of Forest Research 34, Nr. 9 (01.09.2004): 1819–32. http://dx.doi.org/10.1139/x04-047.
Der volle Inhalt der QuelleMylavarapu, R. S. „Diagnostic Nutrient Testing“. HortTechnology 20, Nr. 1 (Februar 2010): 19–22. http://dx.doi.org/10.21273/horttech.20.1.19.
Der volle Inhalt der QuelleČekstere, Gunta, Anita Osvalde und Māris Laiviņš. „Mineral Nutrition of Young Ash in Latvia“. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 70, Nr. 3 (01.06.2016): 138–49. http://dx.doi.org/10.1515/prolas-2016-0022.
Der volle Inhalt der QuelleDissertationen zum Thema "Soil nutrient"
Esposito, Nicole C. „Soil Nutrient Availability Properties of Biochar“. DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1096.
Der volle Inhalt der QuelleKraus, Tamara Esther Caroline. „Tannins and nutrient dynamics in forest soils : plant-litter-soil interactions /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleFerreira, Francisco Jardelson. „Fertilization rose bushes based on nutrient balance in the soil - plant system“. Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17134.
Der volle Inhalt der QuelleRose is an economically important crop for the national and the international market and due to this fact generates income to the Ceara State. Rose is a demanding crop in relation to fertilizers, requiring knowledge of soil fertility, nutritional plant requirements and nutrients use efficiency to obtain adequate fertilization. Based on the nutritional balance through the use of mechanistic and empirical models, it is possible to develop a system to quantify the plant nutrients demands to achieve a given productivity. This paper aims to establish parameters of a fertilizer and lime recommendation system to rose crop, based on the plant nutritional balance. The experiment was conducted at the company Cearosa in SÃo Benedito - CE. Plants will be collected during five months and once a month, five rose plants from four varieties (Top Secret, Avalanche, Attache and Ambience) As contradictory Airlines plants Were grinded. Samples will be ground and nutrients content will be determined: N, P, K, Ca, Mg, S, B, Fe, Mn, e Zn. Every sampling plant time, were also soil samples collected at two depths (0-20 and 20-40 cm) In which they underwent fertility analysis. To estimate the fertilizer recommendation, the system was be subdivided into requirement subsystem (REQ), which includes the plant nutrients demands, considering the recovery efficiency of the nutrients to be applied and a rate to achieve the "sustainability" criteria and the supply subsystem (SUP) that comprises the soil nutrient supply. After determining the total REQ and SUP, held -if the nutritional balance, and if the result is positive (REQ> SUP), fertilizers application is recommended and if the result negative or zero (REQ ≤ SUP), fertilizers application is not recommended. The system estimated that there is excess nitrogen and phosphorus fertilization for all cultivars , however , there needs to be supplemental potassium fertilizer . The system estimated that the soil is able to meet the demand of plants for P and Fe for all cultivars , however , there must be supplementary nitrogen fertilizer , potassium . As for micronutrients , the system estimated that there is need for additional fertilizer for Zn in all rosebushes and Mn for the rosebushes "Top Secret " and " Avalnche " , however with very close recommendation the optimal dose , ie equal to zero
A roseira à uma cultura de grande valor no mercado interno e externo, devido a esse fato, as rosas geram benefÃcios para o estado do CearÃ. à uma cultura muito exigente em relaÃÃo à adubaÃÃo, sendo necessÃrios conhecimentos da fertilidade do solo, exigÃncias nutricionais da planta e eficiÃncia na utilizaÃÃo de nutrientes, para obtenÃÃo de uma adubaÃÃo adequada. Partindo a hipÃtese de que conhecendo-se o balanÃo nutricional da cultura, levando-se em consideraÃÃo a demanda de nutrientes pela cultura para alcanÃar uma dada produtividade e o suprimento de nutrientes pelo solo, à possÃvel determinar a quantidade de nutrientes a ser adicionada na fertilizaÃÃo do solo. O presente trabalho tem como objetivo determinar com base no balanÃo de nutrientes solo-planta a quantidade de nutrientes a ser adicionada no solo para cultura da roseira. O experimento foi conduzido na empresa Cearosa, em SÃo Benedito - CE, as plantas foram coletadas durante cinco meses, sendo uma vez por mÃs, amostrando cinco plantas aleatÃrias, de quatro cultivares de rosas: (Top Secret, Avalanche, Attache e Ambience). As partes aÃreas das plantas foram moÃdas e mineralizadas para determinaÃÃo dos teores dos nutrientes: N, P, K, Ca, Mg, S, B, Fe, Mn e Zn. Simultaneamente a coleta de plantas, tambÃm foram coletadas amostras de solo em duas profundidades, camada de 0 a 20 e de 20 a 40cm. Na qual foram submetidas à anÃlise de fertilidade. Para estimar a recomendaÃÃo de adubaÃÃo o sistema foi subdividido em: subsistema requerimento (REQ), que contempla a demanda de nutrientes pela planta, considerando a eficiÃncia de recuperaÃÃo dos nutrientes a serem aplicados, alÃm de uma dose que atende ao critÃrio de âsustentabilidadeâ e o subsistema suprimento (SUP), que corresponde à oferta de nutrientes pelo solo. ApÃs a determinaÃÃo do REQ total e SUP total, realizou -se o balanÃo nutricional, no qual se apresentar resultado positivo (REQ > SUP), recomenda-se a aplicaÃÃo de fertilizantes, e negativo ou nulo (REQ ≤ SUP), nÃo serà recomendado aplicar fertilizantes. O sistema estimou que o solo à capaz de suprir a demanda das plantas para P e Fe para todas as cultivares, no entanto, à necessÃrio que haja complementaÃÃo de adubaÃÃo nitrogenada, potÃssica. Assim como para os micronutrientes, o sistema estimou que hà necessidade de complementaÃÃo de adubaÃÃo, para Zn em todas as roseiras e Mn para as roseiras âTop secretâ e âAvalncheâ, no entanto com a recomendaÃÃo bem prÃximos a dose ideal, ou seja, igual a zero
Barthelemy, Hélène. „Herbivores influence nutrient cycling and plant nutrient uptake : insights from tundra ecosystems“. Doctoral thesis, Umeå universitet, Institutionen för ekologi, miljö och geovetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-120191.
Der volle Inhalt der QuelleVisser, Saskia M. „Modelling nutrient erosion by wind and water in northern Burkina Faso /“. Wageningen : Wageningen University and Research Centre, 2004. http://www.mannlib.cornell.edu/cgi-bin/toc.cgi?5046904.
Der volle Inhalt der QuelleMills, Carolyn Lesley. „The nutrient economy of grazed grassland“. Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361226.
Der volle Inhalt der QuelleSika, Makhosazana Princess. „Effect of biochar on chemistry, nutrient uptake and fertilizer mobility in sandy soil“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20272.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Biochar is a carbon-rich solid material produced during pyrolysis, which is the thermal degradation of biomass under oxygen limited conditions. Biochar can be used as a soil amendment to increase the agronomic productivity of low potential soils. The aim of this study was to investigate the effect of applying locally-produced biochar on the fertility of low-nutrient holding, sandy soil from the Western Cape, and to determine the optimum biochar application level. Furthermore, this study investigates the effect of biochar on the leaching of an inorganic nitrogen fertilizer and a multi-element fertilizer from the sandy soil. The biochar used in this study was produced from pinewood sawmill waste using slow pyrolysis (450 °C). The soil used was a leached, acidic, sandy soil from Brackenfell, Western Cape. In the first study, the sandy soil mixed with five different levels of biochar (0, 0.05, 0.5, 0.5 and 10.0 % w/w) was chemically characterised. Total carbon and nitrogen, pH, CEC and plant-available nutrients and toxins were determined. The application of biochar resulted in a significant increase in soil pH, exchangeable basic cations, phosphorus and water holding capacity. A wheat pot trial using the biochar-amended soil was carried out for 12 weeks and to maturity (reached at 22 weeks). The trial was conducted with and without the addition of a water-soluble broad spectrum fertilizer. Results showed that biochar improved wheat biomass production when added at low levels. The optimum biochar application level in the wheat pot trial was 0.5 % (approximately 10 t ha-1 to a depth of 15 cm) for the fertilized treatments (21 % biomass increase), and 2.5 % (approximately 50 t ha-1 to a depth of 15 cm) for unfertilized treatments (29 % biomass increase). Since most biochars are alkaline and have a high C:N ratio, caution should be taken when applying it on poorly buffered sandy soil or without the addition of sufficient nitrogen to prevent nutrient deficiencies. In the second study, leaching columns packed with sandy soil and biochar (0, 0.5, 2.5 and 10.0 % w/w) were set up to determine the effect of biochar on inorganic nitrogen fertilizer leaching over a period of 6 weeks. It was found that biochar (0.5, 2.5, and 10.0 % w/w) significantly reduced the leaching of ammonium (12, 50 and 86 % respectively) and nitrate (26, 42 and 95 % respectively) fertilizer from the sandy soil. Moreover, biochar (0.5 %) significantly reduced the leaching of basic cations, phosphorus and certain micronutrients. This study demonstrated the potential of biochar as an amendment of acidic, sandy soils. Our findings suggest that an application rate of 10 t ha-1 should not be exceeded when applying biochar on these soils. Furthermore, biochar application can significantly reduce nutrient leaching in sandy agricultural soils.
AFRIKAANSE OPSOMMING: Biochar is ʼn koolstof-ryke, soliede materiaal geproduseer gedurende pirolise, wat die termiese degradasie van biomassa onder suurstof-beperkte omstandighede behels. Biochar kan gebruik word as ʼn grondverbeterings middel om die agronomiese produktiwiteit van grond te verhoog. Die doel van hierdie studie was om die effek van plaaslike vervaardigde biochar op die vrugbaarheid van die sanderige grond van die Wes-Kaap te ondersoek, en om die optimale biochar toedieningsvlak te bepaal. Verder, het hierdie studie die effek van biochar op die loging van anorganiese stikstof kunsmis en ‘n multi-elementkunsmis op sanderige grond ondersoek. Die biochar wat in hierdie studie gebruik is, is van dennehout saagmeul afval vervaardig d.m.v. stadige pirolise (450 °C). Die grond wat in hierdie studie gebruik is, is ‘n geloogde, suur, sanderige grond van Brackenfell, Wes-Kaap. In die eerste studie, is ‘n chemiesie ondersoek van die sanderige grond wat vermeng met is met vyf verskillende vlakke van biochar (0, 0.05, 0.5 en 10.0 % w/w) uitgevoer. Totale koolstof en stikstof, pH, KUK, en plant-beskikbare voedingstowwe en toksiene is in die grondmengsels bepaal. Die toediening van biochar het ‘n veroorsaak dat die grond pH, uitruilbare basiese katione, fosfor en waterhouvermoë beduidend toegeneem het. ‘n Koringpotproef was uitgevoer vir 12 weke en ook tot volwassenheid (wat op 22 weke bereik was) om die effek van die biochar op die sanderige grond teen die vyf verskillende toedieningsvlakke te bepaal. Daar was behandelings met en sonder die bykomstige toediening van ‘n wateroplosbare breë-spektrumkunsmis. Resultate toon dat die toediening van biochar teen lae vlakke koringbiomassa produksie verbeter. Die optimale biochar toedieningsvlak in die koringpotproef is 0.5 % (omtrent 10 t ha-1 tot ‘n diepte van 15 cm) vir die bemeste behandeling (21 % biomassa toename), en 2.5 % (omtrent 50 t ha-1 na ‘n diepte van 15 cm) vir onbemeste behandelings (29 % biomassa toename). Aangesien die meeste biochars alkalies is en ‘n hoë C:N verhouding besit, moet sorg gedra word wanneer dit op swak-gebufferde of lae N-houdende sanderige gronde toegedien word. Die resultate het aangedui dat die biochar versigtig aangewend moet word om grond oorbekalking te voorkom. In die tweede studie, was kolomme gepak met 2.0 kg van die sanderige grond gemeng met biochar (0, 0.05, 0.5, 2.5 en 10.0 % w/w) om die effek van biochar op die loging die anorganiese stikstof kunsmis oor ‘n tydperk van 6 weke om vas te stel. Daar is gevind dat biochar (0.5, 2.5 en 10.0 % w/w) die loging van ammonium (12, 50 en 86 % onderskeidelik) en nitraat (26, 42 en 95 % onderskeidelik) op sanderige grond aansienliek verminder. Verder, het biochar (0.5 %) die loging van basiese katione, fosfor en mikrovoedingstowwe aansienlik verminder. Hierdie studie het die potensiaal van biochar as verbeteringmiddel van suur, sanderige grond gedemonstreer. Ons bevindinge dui daarop aan dat ‘n toepassing vlak van 10 t ha-1 moet nie oorskry word nie wanneer biochar op hierdie gronde toegedien word. Die toediening van biochar op sanderige grond kan die loging van voedingstowwe aansienlik verlaag.
Hassan, Khalida Abdul-Karim. „The effect of soil conditions on nutrient availability, nutrient uptake and productivity of spring wheat“. Thesis, University of Manchester, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329590.
Der volle Inhalt der QuelleSchofield, Hannah Kate. „A biogeochemical study of nutrient dynamics in artificial soil“. Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3766.
Der volle Inhalt der QuelleCollins, Shane. „Residue composition influences nutrient release from crop residues“. University of Western Australia. School of Earth and Geographical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0171.
Der volle Inhalt der QuelleBücher zum Thema "Soil nutrient"
Nair, Kodoth Prabhakaran. Thermodynamics of Soil Nutrient Bioavailability. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76817-1.
Der volle Inhalt der QuelleK, Soon Y., Hrsg. Soil nutrient availability: Chemistry and concepts. New York, N.Y: Van Nostrand Reinhold, 1985.
Den vollen Inhalt der Quelle findenG, Paoletti M., Foissner Wilhelm und Coleman David C. 1938-, Hrsg. Soil biota, nutrient cycling, and farming systems. Boca Raton: Lewis Publishers, 1993.
Den vollen Inhalt der Quelle findenBarber, Stanley A. Soil nutrient bioavailability: A mechanistic approach. 2. Aufl. New York: Wiley, 1995.
Den vollen Inhalt der Quelle findenKoch, Marguerite S. Soil and surface water nutrients in the Everglades nutrient removal project. West Palm Beach: Environmental Sciences Division, Research and Evaluation Dept., South Florida Water Management District, 1991.
Den vollen Inhalt der Quelle findenBallard, T. M. Evaluating forest stand nutrient status. Victoria, B.C: Information Services Branch, Ministry of Forests, 1986.
Den vollen Inhalt der Quelle findenJorgensen, Jacques R. Foresters' primer in nutrient cycling. Asheville, N.C: U.S. Dept. of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1986.
Den vollen Inhalt der Quelle findenMahler, Robert Louis. Current nutrient status of soils in Idaho, Oregon and Washington. [Corvallis, Or.]: University of Idaho Cooperative Extension Service, Washington State University Cooperative Extension Service, Oregon State University Cooperative Extension Service, and U.S. Dept. of Agriculture, 1985.
Den vollen Inhalt der Quelle findenSinha, Madhulika. Biomass and soil nutrient budget in Karnataka. Bangalore, India: Indian Institute of Science, Centre for Ecological Sciences, 1987.
Den vollen Inhalt der Quelle findenHavlin, John L., und Jeffrey S. Jacobsen, Hrsg. Soil Testing: Prospects for Improving Nutrient Recommendations. Madison, WI, USA: Soil Science Society of America, Inc., American Society of Agronomy, Inc., 1994. http://dx.doi.org/10.2136/sssaspecpub40.
Der volle Inhalt der QuelleBuchteile zum Thema "Soil nutrient"
Wallander, Håkan. „The Nutrient Cycle“. In Soil, 79–100. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08458-9_5.
Der volle Inhalt der QuelleArbestain, M. Camps, F. Macías, W. Chesworth, Ward Chesworth, Otto Spaargaren, Johnson Semoka und Konrad Mengel. „Nutrient Potentials“. In Encyclopedia of Soil Science, 494–500. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_386.
Der volle Inhalt der QuelleBinkley, Dan, und Peter Vitousek. „Soil nutrient availability“. In Plant Physiological Ecology, 75–96. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-9013-1_5.
Der volle Inhalt der QuelleBinkley, Dan, und Peter Vitousek. „Soil nutrient availability“. In Plant Physiological Ecology, 75–96. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2221-1_5.
Der volle Inhalt der QuelleReetsch, Anika, Didas Kimaro, Karl-Heinz Feger und Kai Schwärzel. „Traditional and Adapted Composting Practices Applied in Smallholder Banana-Coffee-Based Farming Systems: Case Studies from Kagera and Morogoro Regions, Tanzania“. In Organic Waste Composting through Nexus Thinking, 165–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36283-6_8.
Der volle Inhalt der QuelleMurrell, T. Scott. „Measuring Nutrient Removal, Calculating Nutrient Budgets“. In Soil Science Step-by-Step Field Analysis, 159–82. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015. http://dx.doi.org/10.2136/2008.soilsciencestepbystep.c13.
Der volle Inhalt der QuelleMukherjee, Swapna. „Chemistry of Soil Nutrient“. In Current Topics in Soil Science, 165–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92669-4_16.
Der volle Inhalt der QuelleMajumdar, Kaushik, Robert M. Norton, T. Scott Murrell, Fernando García, Shamie Zingore, Luís Ignácio Prochnow, Mirasol Pampolino et al. „Assessing Potassium Mass Balances in Different Countries and Scales“. In Improving Potassium Recommendations for Agricultural Crops, 283–340. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59197-7_11.
Der volle Inhalt der QuelleMitra, Sisir. „Plant nutrition and irrigation.“ In Guava: botany, production and uses, 148–71. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247022.0007.
Der volle Inhalt der QuelleFranzen, David. „Crop-Specific Nutrient Management“. In Soil Fertility Management in Agroecosystems, 12–43. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2017. http://dx.doi.org/10.2134/soilfertility.2014.0008.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Soil nutrient"
Zu, Di, Xiaodong Yang, Zhongbin Su, Xiaohe Gu und Yancang Wang. „The soil nutrient monitoring system“. In u- and e- Service, Science and Technology 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.77.17.
Der volle Inhalt der QuelleSavescu, Petre. „MITIGATION METHODS OF SOIL NUTRIENT LOSSES“. In 14th SGEM GeoConference on WATER RESOURCES. FOREST, MARINE AND OCEAN ECOSYSTEMS. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b32/s13.026.
Der volle Inhalt der QuelleMadhumathi, R., T. Arumuganathan, R. Shruthi und R. Sneha Iyer. „Soil Nutrient Analysis using Colorimetry Method“. In 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). IEEE, 2020. http://dx.doi.org/10.1109/icstcee49637.2020.9277182.
Der volle Inhalt der QuelleTreese, Daniel P., Shirley E. Clark und Katherine H. Baker. „Nutrient Leaching from Disturbed Soil Horizons“. In World Environmental and Water Resources Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41114(371)302.
Der volle Inhalt der QuellePuno, John Carlo V., Rhen Anjerome R. Bedruz, Allysa Kate M. Brillantes, Ryan Rhay P. Vicerra, Argel A. Bandala und Elmer P. Dadios. „Soil Nutrient Detection using Genetic Algorithm“. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ). IEEE, 2019. http://dx.doi.org/10.1109/hnicem48295.2019.9072689.
Der volle Inhalt der QuellePallevada, Hema, Siva parvathi Potu, Teja Venkata Kumar Munnangi, Bharath Chandhra Rayapudi, Sai Raghava Gadde und Mukesh Chinta. „Real-time Soil Nutrient detection and Analysis“. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2021. http://dx.doi.org/10.1109/icacite51222.2021.9404549.
Der volle Inhalt der QuelleKrishna, N. M. Sai, R. Priyakanth, Mahesh Babu Katta und Radha Abburi. „Soil Nutrient Survey and Google Map Cartography“. In 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 2020. http://dx.doi.org/10.1109/smart50582.2020.9337135.
Der volle Inhalt der QuelleVesic, Ana, Vuk Ignjatovic, Sava Lakicevic, Luka Lakicevic, Bojan Gutic, Hristo Skacev, Dusan Dotlic, Andrej Micovic, Marina Marjanovic Jakovljevic und Miodrag Zivkovic. „Predicting Plant Water and Soil Nutrient Requirements“. In 2020 Zooming Innovation in Consumer Technologies Conference (ZINC). IEEE, 2020. http://dx.doi.org/10.1109/zinc50678.2020.9161433.
Der volle Inhalt der QuelleVernekar, Sulaxana R., Ingrid Anne P. Nazareth, Jivan S. Parab und Gourish M. Naik. „RF spectroscopy technique for soil nutrient analysis“. In 2015 International Conference on Technologies for Sustainable Development (ICTSD). IEEE, 2015. http://dx.doi.org/10.1109/ictsd.2015.7095878.
Der volle Inhalt der QuelleAkhil, R., M. S. Gokul, Sruthi Menon und Lekshmi S. Nair. „Automated Soil Nutrient Monitoring for Improved Agriculture“. In 2018 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2018. http://dx.doi.org/10.1109/iccsp.2018.8524512.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Soil nutrient"
Strand, Allan. Effects of fine-root senescence upon soil communities and nutrient flux into soil pools (Final Report). Office of Scientific and Technical Information (OSTI), Januar 2022. http://dx.doi.org/10.2172/1841430.
Der volle Inhalt der QuelleCusack, Daniela, Benjamin Turner, S. Wright und Lee Dietterich. Consequences of Altered Root Nutrient Uptake for Soil Carbon Stabilization (Final Report). Office of Scientific and Technical Information (OSTI), Februar 2021. http://dx.doi.org/10.2172/1763927.
Der volle Inhalt der QuelleBusby, Ryan, H. Torbert und Stephen Prior. Soil and vegetation responses to amendment with pulverized classified paper waste. Engineer Research and Development Center (U.S.), Mai 2022. http://dx.doi.org/10.21079/11681/44202.
Der volle Inhalt der QuelleAbay, Kibrom A., Mehari Hiluf Abay, Mulubrhan Amare, Guush Berhane und Ermias Betemariam. Mismatch between soil nutrient requirements and fertilizer applications: Implications for yield responses in Ethiopia. Washington, DC: International Food Policy Research Institute, 2021. http://dx.doi.org/10.2499/p15738coll2.134449.
Der volle Inhalt der QuelleAlvez, Juan, James Cropper, Lynn Knight, Ed Rayburn, Howard Skinner, Kathy Soder und Mike Westendorf. Managing Grazing to Improve Climate Resilience. USDA Northeast Climate Hub, Februar 2017. http://dx.doi.org/10.32747/2017.6956540.ch.
Der volle Inhalt der QuelleComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report, October-December 1999. Office of Scientific and Technical Information (OSTI), Januar 2000. http://dx.doi.org/10.2172/759444.
Der volle Inhalt der QuelleBjorkman, Thomas, Michel Cavigelli, Dan Dostie, Joshua Faulkner, Lynn Knight, Steven Mirsky und Brandon Smith. Cover Cropping to Improve Climate Resilience. USDA Northeast Climate Hub, Februar 2017. http://dx.doi.org/10.32747/2017.6956539.ch.
Der volle Inhalt der QuelleComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report for the period January-March 2000. Office of Scientific and Technical Information (OSTI), März 2000. http://dx.doi.org/10.2172/759332.
Der volle Inhalt der QuelleComerford, N. B. Diagnosis and correction of soil nutrient limitations in intensively managed Southern pine forests. Quarterly report for the period July-September 1999. Office of Scientific and Technical Information (OSTI), Oktober 1999. http://dx.doi.org/10.2172/761037.
Der volle Inhalt der QuelleHaan, Matthew M., James R. Russell, Daniel G. Morrical und Daryl R. Strohbehn. Effects of Grazing Management on Forage Sward Height, Mass, and Nutrient Concentrations and the Proportions of Fecal Cover and Bare Soil in Pastures. Ames (Iowa): Iowa State University, Januar 2007. http://dx.doi.org/10.31274/ans_air-180814-133.
Der volle Inhalt der Quelle