Auswahl der wissenschaftlichen Literatur zum Thema „Soil microbiology“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Soil microbiology" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Soil microbiology"

1

DRIJBER, RHAE A. „Soil Microbiology“. Soil Science 160, Nr. 5 (November 1995): 384. http://dx.doi.org/10.1097/00010694-199511000-00008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Balkybeki, E. Z. H. „MICROBIOLOGY OF RICE SOIL“. Pochvovedenie i agrokhimiya, Nr. 4 (2021): 72–88. http://dx.doi.org/10.51886/1999-740x_2021_4_72.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Doran, John W., E. A. Paul und F. E. Clark. „Soil Microbiology and Biochemistry“. Journal of Range Management 51, Nr. 2 (März 1998): 254. http://dx.doi.org/10.2307/4003217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wolf, Duane C. „MILESTONES IN SOIL MICROBIOLOGY“. Soil Science 171, Suppl. 1 (Juni 2006): S97—S99. http://dx.doi.org/10.1097/01.ss.0000227580.33425.32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wallenstein, Matthew D. „Modern Soil Microbiology (second Edition)“. Soil Science Society of America Journal 71, Nr. 6 (November 2007): 1947. http://dx.doi.org/10.2136/sssaj2006.0021br.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schadt, Christopher W., und Aimée T. Classen. „Soil Microbiology, Ecology, and Biochemistry“. Soil Science Society of America Journal 71, Nr. 4 (Juli 2007): 1420. http://dx.doi.org/10.2136/sssaj2007.0017br.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cleghorn, Sean. „Soil microbiology and soiled reputations“. Lancet Infectious Diseases 13, Nr. 1 (Januar 2013): 26. http://dx.doi.org/10.1016/s1473-3099(12)70338-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Whitman, William B. „Modern Soil Microbiology, second ed.“ Agricultural Systems 100, Nr. 1-3 (April 2009): 89. http://dx.doi.org/10.1016/j.agsy.2008.12.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Burns, Richard G., und Julie A. Davies. „The Microbiology of Soil Structure“. Biological Agriculture & Horticulture 3, Nr. 2-3 (Januar 1986): 95–113. http://dx.doi.org/10.1080/01448765.1986.9754465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Germida, J. J. „Environmental Microbiology“. Soil Science 167, Nr. 6 (Juni 2002): 416–20. http://dx.doi.org/10.1097/00010694-200206000-00006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Soil microbiology"

1

Jeffery, Simon. „The microbiology of arable soil surfaces“. Thesis, Cranfield University, 2007. http://dspace.lib.cranfield.ac.uk/handle/1826/2245.

Der volle Inhalt der Quelle
Annotation:
Whilst much is known about the physics and erosion of soil surfaces on a millimetre scale, little is known about the associated microbiology, particularly in temperate arable systems. The vast majority of research regarding microbial interactions at soil surfaces has concerned microbiotic crusts. However, such surface crusts take many years to form and then only in relatively undisturbed soil systems. Arable soil surfaces are subject to relatively extreme environmental conditions, potentially undergoing rapid changes in relation to temperature, water status and solar radiation compared to deeper soil zones. These extreme environmental parameters are likely to have a large impact on the biota found at the arable soil surface when compared to that which occurs in deeper soil zones. Phenotypic profiling using phospholipid fatty acid (PLFA) analysis, microbial biomass, and chlorophyll concentration were used to characterise soil microbial communities with the aim of quantifying differences within the surface layers of arable systems on a millimetre scale. This field work was supported with a series of microcosm-scale studies in which parameters such as length of time between disturbance events and the quality of light reaching the soil surface were controlled. Using microcosms subjected to simulated rainfall and imaged using X-ray computed tomography scanning, the effects of the soil surface microbiota on associated physical properties including structural integrity, porosity, erodibility and hydrological properties were investigated. This research showed that given sufficient time between disturbance events, environmental parameters such as temperature and wet:dry cycling were sufficient to drive the formation of a distinct soil surface phenotype, which appeared to be consistently confined to an order of depth of circa 1 mm. It was notable that the PLFA 16:0 was consistently associated with discrimination between phenotypes between soil surface layers. Calculation of the ratio of fungal to bacterial PLFA biomarkers showed a consistently higher ratio of fungi to bacteria present in the soil surface layer to a depth of circa 1 mm, providing evidence that fungi grow preferentially over the soil surface compared to through the soil matrix. Further investigation demonstrated that light, particularly at photosynthetically active wavelengths, was the main driving factor in the establishment of the distinct soil surface phenotypes. The inocula which drove the formation of such soil-surface community phenotypes, especially the photoautotrophic components, was demonstrated to derive predominantly from aerial sources. Functionally the nature of the soil surface community was found to affect run-off generation and shear strength at the surface. There was no significant impact of the soil surface microbiota on erodibility or water infiltration rates, although whilst distinct surface phenotypes had developed in this experimental circumstance, these were relatively deficient in photoautotrophs compared to other microcosm experiments and field circumstances, and hence extrapolation of this conclusion is not sound. This project has demonstrated that a soil surface ecological niche may exist in other unexplored soil surfaces and highlights the needs to explore this possibility and to examine any associated functional consequence should such niches be found to exist.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jones, Frances Patricia. „The microbiology of lean and obese soil“. Thesis, University of Reading, 2017. http://centaur.reading.ac.uk/69408/.

Der volle Inhalt der Quelle
Annotation:
The bacterial genus Bradyrhizobium is biologically important within soils, with different representatives found to perform a range of functions including nitrogen fixation through symbioses, photosynthesis and denitrification. The Highfield experiment at Rothamsted provides an opportunity to study the impact of plants on microbial communities as it has three long-term contrasting regimes; permanent grassland, arable and bare fallow (devoid of plants). The bare fallow plots have a significant reduction in soil carbon and microbial biomass. Bradyrhizobium has been shown by metagenomic studies on soil to be one of the most abundant and active groups including in bare fallow soil indicating that some phenotypes are adapted to survive in the absence of plants. A culture collection was created with isolates obtained from contrasting soil types from Highfield in addition to woodland soil, gorse (Ulex europeaus) and broom (Cytisus scoparius) root nodules. The collection’s phylogeny has been explored by sequencing housekeeping genes to determine whether soil treatment affects the core genome. One grassland and one bare fallow isolate had their genome sequenced and differences have been assessed to establish their potential for a range of functions and to direct future experiments. The functional diversity of the collection has been investigated using carbon metabolism assays to identify key substrates and determine whether the isolates group according to soil treatment. Symbiosis capacity and role in nitrogen cycling has been examined using nodulation tests, anaerobic growth on nitrate and nitrous oxide production and reduction through denitrification. A high level of diversity can be seen throughout the collection with differences being linked to niche adaptation. Understanding more about Bradyrhizobium could give clues on how above ground management impacts a key group within the soil community. Furthermore, the first assembled genomes of two non-symbiotic Bradyrhizobium strains isolated from soil provide an important resource for microbiology and soil ecology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Paulse, Arnelia N. (Arnelia Natalie). „Soil stabilization by microbial activity“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53593.

Der volle Inhalt der Quelle
Annotation:
Thesis (MSc)--Stellenbosch University, 2003.
ENGLISH ABSTRACT: Microorganisms play an important role in the stability and maintenance of the ecosystem and in the condition of the soil. However, in their natural environment, microorganisms often experience changing and hostile conditions. They therefore need to be able to adapt physiologically and modify their micro-environment. Biofilm formation is one mechanism to establish favorable micro-environments. The extracellular polymeric substances (EPS) that are typically associated with biofilm formation may also have an impact on soil structure. The aim of this project was to evaluate the potential of microbial manipulation on EPS production and the possible impact thereof on soil structure in order to improve water retention. Specific objectives of this study included the screening of natural environments for EPS-producers, developing techniques to observe EPS production and accumulation in the pores between soil particles, measuring the effect of EPS production on soil water hydraulic gradient, as well as determining the fate and impact of EPS-producers when introduced to naturally-occurring soil microbial communities. Several environmental samples have been screened for EPS-producing microorganisms. Soil columns were then inoculated with these EPS-producers and the passage of 20 mlaliquots water through the columns measured at 3 or 4-day intervals. Microbes isolated from soil, through their EPS production capability proved to retain water more effectively than was the case for water-borne EPS-forming microbes. This phenomenon was further studied using flow cells, filled with soil and inoculated with the EPS-producers isolated from either soil or water. Fluorescence microscopy showed that the soil microbes produced EPS that clogged pores between sand particles more effectively. This clogging resulted in lowering the soil water hydraulic gradient. To evaluate the effect of EPS-producers on existing soil microbial communities, cell counts, Biolog™whole-community carbon utilization studies and T-RFLP (terminal-restriction fragment length polymorphism) analyses were performed. Shifts in the soil microbial community could not be readily seen by observing microbial numbers and T-RFLP-analysis, but was noticeable in carbon utilization patterns.
AFRIKAANSE OPSOMMING: Mikroorganismes speel 'n belangrike rol in die stabiliteit en instandhouding van die ekosisteem en in die kondisie van die grond. In hul natuurlike omgewing ervaar mikroorganismes dikwels veranderlike en ongunstige toestande. Mikroorganismes het dus nodig om hulself fisiologies aan te pas en verander hul mikro-omgewing daarvolgens. Biofilm-vorming is een meganisme om gunstige mikro-omgewings te skep. Die ekstrasellulêre polimeriese produkte (EPP) wat tydens biofilm-vorming gevorm word, mag ook 'n impak hê op die grondstruktuur. Die doel van hierdie projek was om die potensiaal van mikrobiese manipulasie op EPP-vorming te evalueer asook die moontlike impak daarvan op grondstruktuur wat sodoende waterretensie kon bevorder. Die spesifieke doelwitte van hierdie studie het ingesluit die isolasie van EPPproduseerders vanuit natuurlike omgewings, die ontwikkeling van verskeie tegnieke waarvolgens EPP-produksie en die akkumulasie daarvan in die porieë tussen gronddeeltjies bestudeer kon word, die effek van EPP-produksie op hidrouliese gradiënt van grondwater en om die lot en impak wat EPP-produseerders op natuurlike grondmikrobiese populasies te bepaal. Verskeie grond- en watermonsters was getoets vir die voorkoms van EPP-produserende mikroorganismes. Grondkolomme is geïnokuleer met EPP-produseerders en die vloei van 20 ml-volumes water deur die kolomme is gemeet met 3 of 4-dag intervalle. Grond-geïsoleerde mikrobes het beter waterretensie tot gevolg gehad as water- geïsoleerde mikrobes. Hierdie verskynsel was verder bestudeer deur die gebruik van vloeiselle, gevul met grond of sand en geïnokuleer met EPP-produseerders geïsoleer vanuit grond of water. Fluoressensie mikroskopie het aangetoon dat grondmikrobes EPP produseer wat die porieë tussen gronddeeltjies meer effektief verstop. Dié verstopping het gelei tot die verlaging van die grondwater se hidrouliese gradiënt wat bepaal is deur die gebruik van die konstante-vlak bepalingsmetode. Om die effek van EPP-produseerders op bestaande mikrobiese populasies te bepaal, is seltellings, Biolog™ heel-gemeenskap koolstofverbruik studies en T-RFLP (terminale-restriksie fragment-lengte polimorfisme) analises uitgevoer. Veranderinge in die mikrobiese populasie kon nie geredelik bloot deur die bepaling van mikrobiese getalle en T-RFLP-analise waargeneem word nie, maar wel met die koolstofverbruikspatrone.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wagai, Rota. „Climatic and Lithogenic Controls on Soil Organic Matter-Mineral Associations“. Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/WagaiR2005.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Marí, Marí Teresa. „Changes in soil biodiversity and activity along management and climatic gradients“. Doctoral thesis, Universitat de Lleida, 2017. http://hdl.handle.net/10803/457976.

Der volle Inhalt der Quelle
Annotation:
Els anomenats “rangelands” són àrees sense cultivar, àmpliament pasturades per animals domèstics i salvatges, actualment amenaçats pels canvis climàtic i en l’ús del sòl. Els microorganismes del sòl tenen un paper clau tant en la descomposició com en diversos processos de l’ecosistema, fet pel qual composició i funció de la comunitat microbiana han estat utilitzats durant molt temps com a índexs de fertilitat del sòl. Els rangelands europeus i africans comparteixen un origen antropogènic comú, però el clima i la gestió del sòl els afecten d’una manera diferent. És per això que aquesta tesi pretén analitzar la comunitat microbiana d’ambdós tipus d’ecosistemes, per tal d’observar els efectes d’algunes de les amenaces comunes des d’una perspectiva més global. Mentre que la sobrepastura va demostrar tenir l’efecte més perjudicial sobre la funció microbiana en sòls kenyans, es va trobar un efecte més fort del clima sobre els prats europeus. Els fongs i els bacteris van covariar al llarg de gradients altitudinals i climàtics, però la comunitat bacteriana va mostrar una recuperació més ràpida després de les pertorbacions biològiques i físico-químiques del sòl. Aquest conjunt d’estudis afegeix nous coneixements sobre l’estructura i funció dels rangelands africans i europeus, i convida a explorar noves línies de recerca que incloguin tant bacteris com fongs alhora d’estudiar la comunitat microbiana del sòl.
Los llamados "rangelands" son áreas sin cultivar, ampliamente pastoreadas por animales domésticos y salvajes, actualmente amenazados por los cambios climático y de uso del suelo. Los microorganismos del suelo tienen un papel clave tanto en la descomposición como en diversos procesos del ecosistema, por lo que composición y función de la comunidad microbiana han sido utilizados durante mucho tiempo como índices de fertilidad del suelo. Los rangelands europeos y africanos comparten un origen antropogénico común, pero el clima y la gestión del suelo les afectan de una manera diferente. Es por ello que esta tesis pretende analizar la comunidad microbiana de ambos tipos de ecosistemas, a fin de observar los efectos de algunas de las amenazas comunes desde una perspectiva más global. Mientras que el sobrepastoreo demostró tener el efecto más perjudicial sobre la función microbiana en suelos kenianos, se encontró un efecto más fuerte del clima sobre los prados europeos. Los hongos y las bacterias covariaron a lo largo de gradientes altitudinales y climáticos, pero la comunidad bacteriana mostró una recuperación más rápida después de las perturbaciones biológicas y físico-químicas del suelo. Este conjunto de estudios añade nuevos conocimientos sobre la estructura y función de los rangelands africanos y europeos, e invita a explorar nuevas líneas de investigación que incluyan tanto bacterias como hongos en el estudio de la comunidad microbiana del suelo.
Rangelands are uncultivated areas extensively grazed by wild and domestic animals, currently threatened by land use and climatic changes. Soil microorganisms play a key role in decomposition and several ecosystem processes and the composition and function of the microbial community have been long used as indices of soil fertility. African and European rangelands share a common anthropogenic origin, but climate and management affect them in a different way. That is why this thesis aimed to analyze the microbial community of both in order to observe the effects of some common threats from a more global perspective. While overgrazing proved to have the most detrimental effect on the soil microbial function in Kenyan soils, a stronger effect of climate was found to affect European grasslands. Fungi and bacteria co-varied along altitudinal and climatic gradients, but the bacterial community showed a fast recovery after biological and soil physico-chemical disturbances. This group of studies adds new knowledge on the structure and function of the African and European rangelands, and invite to explore new lines of research including both fungal and bacterial consortia when studying the soil microbial community.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rodriguez, Luis A. (Luis Antonio). „Adenylate Energy Charge Determinations of Soil Bacteria Grown in Soil Extract Medium“. Thesis, University of North Texas, 1988. https://digital.library.unt.edu/ark:/67531/metadc500662/.

Der volle Inhalt der Quelle
Annotation:
The adenylate energy charge values of twenty bacteria isolated from soil and cultured in a medium consisting of soil and distilled water were determined by the luciferin-luciferase bioluminescense method. The purpose of this study was to examine the growth and energy charge values of these organisms in soil extract medium, and to determine what effect the addition of glucose has on their energy charge values. Three of the organisms employed in this study showed energy charge values similar to those reported for bacteria grown in enriched media. The remainder of the isolates demonstrated low energy charge values, and scant growth in the soil medium.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bester, Reinhard. „Growth and survival of Saccharomyces cerevisiae in soil“. Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/16597.

Der volle Inhalt der Quelle
Annotation:
Thesis (MSc)--University of Stellenbosch, 2005.
ENGLISH ABSTRACT: Saccharomyces cerevisiae is commonly associated with the wine industry. However, this yeast was also isolated from soils not associated with vines. Despite the fact that S. cerevisiae is not perceived as an autochthonous soil yeast, its interaction with other soil microbiota suggests the contrary. Aside from a few in vitro studies, the fate of S. cerevisiae in soil is largely unknown. This may partly be ascribed to the lack of reliable methods to enumerate fermentative yeasts in soil. Consequently, we evaluated an enumeration procedure for fermentative yeasts in soil, whereby yeast malt extract (YM) agar plates containing selective agents, were incubated in anaerobic jars before the colonies were enumerated. This procedure proved to be selective for fermentative yeasts, such as industrial strains of S. cerevisiae. We then commenced studying the growth and survival of S. cerevisiae in soil differing in moisture content and nutrient levels, using S. cerevisiae strain S92 and the genetically modified strain S. cerevisiae ML01, as well as two autochthonous soil yeasts, Cryptococcus laurentii and Cryptococcus podzolicus. The yeast strains were each inoculated into three series of microcosms containing sterile soil with a moisture content of ca. 30% (v/w), a moisture content of ca. 15% (v/w), or a moisture content of ca. 30% supplemented with nutrients used in agriculture. Growth of each strain was monitored for a period of 48 days and all the yeasts were found to grow or survive under these conditions, up until the end of the incubation period. Generally, the cryptococci reached larger population sizes in the soil than the Saccharomyces strains, which may be due to their ability to utilize a wider range of carbon sources and to survive in semi-arid soils. Aside from cell numbers observed in nutrient supplemented soil, in which S. cerevisiae ML01 reached higher numbers than S92, there was no significant difference between the growth and survival of the Saccharomyces strains. In all the microcosms, metabolic rates, as determined by measuring CO2 emissions from soil, reached a maximum within the first day and then declined over the remainder of the trial, possibly due to depletion of nutrients. Differences in CO2 emissions from the different series of microcosms were attributed to different metabolic rates and energy expenditure needed to maintain yeast populations under different conditions. Each of the above-mentioned yeasts was subsequently inoculated in a microcosm prepared from non-sterile soil and monitored using selective enumeration procedures. The Saccharomyces strains were enumerated using the above-mentioned soil dilution plates incubated in anaerobic jars. The presence of natural soil biota caused a decrease in viable yeast numbers for all strains and this was ascribed to competition with and predation by other soil borne organisms. Further evidence for competition and/or amensalism impacting on Saccharomyces populations in soil was obtained when monitoring co-cultures of Saccharomyces with C. laurentii 1f and C. podzolicus 3f in soil microcosms, revealed a significant reduction in Saccharomyces numbers during a 28 day incubation period. However, when the two Saccharomyces strains were cultured in soil microcosms inoculated with a protistan predator, populations of both strains increased and remained at these high levels for the duration of the trial. These findings point to a possible symbiosis between Saccharomyces and the protista whereby the predators ensure continuous nutrient cycling within the soil microcosms. In the final part of the study, epifluorescence microscopy revealed that, similar to known soil cryptococci, the two Saccharomyces strains were able to form biofilms in oligotrophic conditions. The results of this study showed that in the presence of natural soil microbes, no differences exist between the growth and survival of S. cerevisiae S92 and S. cerevisiae ML01. Also, the findings point to a natural niche for this species somewhere in the soil habitat.
AFRIKAANSE OPSOMMING: Saccharomyces cerevisiae word algemeen met die wynindustrie geassosieer. Hierdie gis is egter ook uit grond geïsoleer wat nie met wingerd geassosieer word nie. Ten spyte van die feit dat S. cerevisiae nie as ‘n outogtoniese grondgis beskou word nie, dui sy interaksie met ander grondmikrobiota op die teendeel. Behalwe vir ‘n paar in vitro studies, is die lot van S. cerevisiae in grond grootliks onbekend. Dit mag gedeeltelik aan die gebrek aan betroubare metodes om fermenterende giste in grond te tel, toegeskryf word. Ons het gevolglik ‘n tellingsmetode vir fermenterende giste in grond geëvalueer waarin gis-mout ekstrak (GM) agar plate, bevattende selektiewe agente, in anaërobiese flesse geïnkubeer is voordat die kolonies getel is. Hierdie metode was selektief vir fermenterende giste, soos die industriële stamme van S. cerevisiae. Hierna is die groei en oorlewing van S. cerevisiae bestudeer in gronde met verskillende vog- en nutriëntvlakke deur gebruik te maak van S. cerevisiae stam S92 en die geneties gemodifiseerde stam S. cerevisiae ML01, asook twee outogtoniese grondgiste, Cryptococcus laurentii en Cryptococcus podzolicus. Die gisstamme is elk geïnokuleer in drie reekse van mikrokosmosse bestaande uit steriele grond met ‘n vogvlak van ca. 30% (v/w), ‘n vogvlak van ca. 15% (v/w), of ‘n vogvlak van ca. 30% aangevul met landbounutriënte. Die groei van elke stam is waargeneem vir ‘n tydperk van 48 dae en al die giste het onder hierdie omstandighede tot aan die einde van die inkubasietydperk gegroei of oorleef. Oor die algemeen het die cryptococci groter populasies in die grond gevorm as die Saccharomyces stamme, wat toegereken kan word aan hul vermoë om ‘n wyer reeks koolstofbronne te benut en om in droë gronde te oorleef. Behalwe dat S. cerevisiae ML01 ‘n hoër aantal selle in nutriënt aangevulde grond behaal het as S92, was daar geen beduidende verskil tussen die groei en oorlewing van die Saccharomyces stamme nie. In al hierdie mikrokosmosse het die metaboliese tempo, soos bepaal deur CO2 vrystellings vanuit grond te meet, ‘n maksimum bereik binne die eerste dag en dan het dit afgeneem oor die res van die toetsperiode, waarskynlik as gevolg van die uitputting van die nutriënte. Verskille in die CO2 vrystellings wat vir die verskillende reekse van mikrokosmosse aangeteken is, is te wyte aan die verskillende metaboliese tempo’s en energiegebruik benodig om gispopulasies onder verskillende omstandighede in stand te hou. Elk van bogenoemde giste is vervolgens geïnokuleer in ‘n mikrokosmos wat voorberei is van nie-steriele grond, en waargeneem deur selektiewe enumerasie prosedures toe te pas. Die Saccharomyces stamme is getel deur gebruik te maak van bogenoemde grondverdunningsplate wat in anaërobiese flesse geïnkubeer is. Die teenwoordigheid van natuurlike grondbiota het in alle stamme ‘n afname in lewensvatbare gisgetalle veroorsaak en is toegeskryf aan die kompetisie met en predasie deur ander grondorganismes. Verdere bewys van die impak van kompetisie en/of amensalisme op Saccharomyces populasies in die grond, is die beduidende afname in Saccharomyces getalle tydens ‘n 28 dag inkubasie tydperk, waartydens ko-kulture van Saccharomyces stamme met C. laurentii 1f en C. podzolicus 3f in grond mikrokosmosse ondersoek is. Toe die twee Saccharomyces stamme egter in grond mikrokosmosse opgekweek is wat met ‘n protistiese predator geïnokuleer is, het populasies van albei stamme gegroei en om hierdie hoë vlakke gebly tot aan die einde van die toets. Hierdie bevindings dui ‘n moontlike simbiose tussen Saccharomyces en die protista aan waardeur die predatore deurlopende nutriëntsiklering binne die grondmikrokosmos verseker. In die laaste deel van die studie toon epifluoressensie mikroskopie aan dat, net soos bekende grond cryptococci, die twee Saccharomyces stamme in staat is om biofilms in oligotrofiese omstandighede te vorm. Die resultaat van die studie toon aan dat in die teenwoordigheid van natuurlike grondmikrobe daar geen verskil tussen die groei en oorlewing van S. cerevisiae S92 en S. cerevisiae ML01 is nie. Die bevindings dui ook aan dat daar ‘n natuurlike nis vir hierdie spesie iewers in die grondhabitat is.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Coyle, Kieran. „An investigation of the role of soil micro-organisms in phosphorus mobilisation : a report submitted to fulfil the requrements of the degree of Doctor of Philosophy“. Title page, table of contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phc8814.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hoyle, Frances Carmen. „The effect of soluble organic carbon substrates, and environmental modulators on soil microbial function and diversity /“. Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jenkins, Anthony Blaine. „Organic carbon and fertility of forest soils on the Allegheny Plateau of West Virginia“. Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2486.

Der volle Inhalt der Quelle
Annotation:
Thesis (M.S.)--West Virginia University, 2002.
Title from document title page. Document formatted into pages; contains x, 282 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Soil microbiology"

1

Kannaiyan, S. Soil microbiology and soil biotechnology. New Delhi: Associated Pub. Co., 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kannaiyan, S. Soil microbiology and soil biotechnology. New Delhi: Associated Pub. Co., 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Elsas, Jan Dirk van, Jack T. Trevors, Alexandre Soares Rosado und Paolo Nannipieri, Hrsg. Modern Soil Microbiology. Third edition. | Boca Raton : Taylor & Francis, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429059186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Elsas, J. D. van 1951-, Jansson Janet K und Trevors Jack T. 1953-, Hrsg. Modern soil microbiology. 2. Aufl. Boca Raton, FL: Taylor & Francis, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Elsas, J. D. van 1951-, Trevors Jack T. 1953- und Wellington, E. M. H. 1954-, Hrsg. Modern soil microbiology. New York: Marcel Dekker, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

1951-, Sylvia D. M., Hrsg. Principles and applications of soil microbiology. 2. Aufl. Upper Saddle River, N.J: Pearson Prentice Hall, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Paul, Eldor Alvin. Soil microbiology and biochemistry. San Diego: Academic Press, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Paul, Eldor Alvin. Soil microbiology and biochemistry. San Diego: Academic Press, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Paul, Eldor Alvin. Soil microbiology and biochemistry. San Diego: Academic Press, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

E, Clark F., Hrsg. Soil microbiology and biochemistry. 2. Aufl. London: Academic, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Soil microbiology"

1

Gupta, Raj K., I. P. Abrol, Charles W. Finkl, M. B. Kirkham, Marta Camps Arbestain, Felipe Macías, Ward Chesworth et al. „Soil Microbiology“. In Encyclopedia of Soil Science, 673–78. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-3995-9_544.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kamal, Shwet, und Ajit Varma. „Peatland Microbiology“. In Soil Biology, 177–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74231-9_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gómez-Silva, Benito, Fred A. Rainey, Kimberley A. Warren-Rhodes, Christopher P. McKay und Rafael Navarro-González. „Atacama Desert Soil Microbiology“. In Soil Biology, 117–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74231-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kiseleva, Elena, Konstantin Mikhailopulo und Galina Novik. „Modern Immunochemical Approaches in Microbiology“. In Soil Biology, 303–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96971-8_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Reineke, Walter, und Michael Schlömann. „Biological Soil Remediation“. In Environmental Microbiology, 523–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-66547-3_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sjöling, Sara, Jan Dirk van Elsas, Francisco Dini-Andreote und Jorge L. Mazza Rodrigues. „Soil Metagenomics“. In Modern Soil Microbiology, 227–43. Third edition. | Boca Raton : Taylor & Francis, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429059186-14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yergeau, Etienne. „Fell-Field Soil Microbiology“. In Antarctic Terrestrial Microbiology, 115–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45213-0_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ferjani, Eman Ali, Merfat Taher Ben Mahmoud und Asma Yousef Alnajjar. „Soil Microbiology and Biotechnology“. In World Soils Book Series, 91–118. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66368-1_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Büdel, Burkhard, und Claudia Colesie. „Biological Soil Crusts“. In Antarctic Terrestrial Microbiology, 131–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45213-0_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Elsas, Jan Dirk van. „The Soil Environment *“. In Modern Soil Microbiology, 3–19. Third edition. | Boca Raton : Taylor & Francis, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429059186-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Soil microbiology"

1

Habiyaremye, Jean de Dieu, Sylvie Herrmann, François Buscot und Kezia Goldmann. „Temporal changes and alternating host tree root and shoot growth affect soil microbiomes“. In 1st International Electronic Conference on Microbiology. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecm2020-07109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Muñoz, Ana, Antonio López-Piñeiro, José A. Regodón und Manuel Ramírez. „Soil bioremediation of atrazine pesticide by two strains of soil microorganism“. In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dubova, L., V. Šteinberga, O. Mutere, I. Jansone und I. Alsiņa. „Influence of organic and conventional soil management system on soil respiration and enzymatic activity“. In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

González, A. Muñoz, A. López Piñeiro und M. Ramírez Fernández. „Viability of culturable soil microorganisms during freeze storage“. In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mehravar, M., S. Sardari, M. Mahboubi und P. Owlia. „Isolation and screening of soil microorganisms for membrane-active antimicrobial metabolites“. In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cuesta, G., L. Morales, R. García de la Fuente, S. Botella, F. Fornes und M. Abad. „Identification of actinomycetes with antifungal activity isolated from soil amended with composts“. In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ajdary, Khalil, und Hamid Zare Abianeh. „Modeling of nitrogen leaching by using urea fertilizer in sandy loam soil“. In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pellegrini, Marika, Daniela Spera, Claudia Ercole und Maddalena del Gallo. „<em>Allium cepa </em>L. <em>s</em>eed inoculation with a consortium of plant growth-promoting bacteria: effects on plant growth and development and soil fertility status and microbial community“. In 1st International Electronic Conference on Microbiology. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecm2020-07121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Muñoz, Ana, Antonio López-Piñeiro, José A. Regodón und Manuel Ramírez. „Determination of soil microbial community fluctuations by different techniques in a maize field“. In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ueda, Junko, Keiko Watanabe, Shuichi Yamamoto und Norio Kurosawa. „Isolation and characterization of cellulase producing bacteria from pruning tree compost and soil“. In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Soil microbiology"

1

Carlson, Jake. Agronomy / Soil Microbiology - Purdue University. Purdue University Libraries, September 2011. http://dx.doi.org/10.5703/1288284314994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Minz, Dror, Eric Nelson und Yitzhak Hadar. Ecology of seed-colonizing microbial communities: influence of soil and plant factors and implications for rhizosphere microbiology. United States Department of Agriculture, Juli 2008. http://dx.doi.org/10.32747/2008.7587728.bard.

Der volle Inhalt der Quelle
Annotation:
Original objectives: Our initial project objectives were to 1) Determine and compare the composition of seed-colonizing microbial communities on seeds, 2) Determine the dynamics of development of microbial communities on seeds, and 3) Determine and compare the composition of seed-colonizing microbial communities with the composition of those in the soil and rhizosphere of the plants. Revisions to objectives: Our initial work on this project was hampered by the presence of native Pythium species in the soils we were using (in the US), preventing us from getting accurate assessments of spermosphere microbial communities. In our initial work, we tried to get around this problem by focusing on water potentials that might reduce damage from native Pythium species. This also prompted some initial investigation of the oomycete communities associated seedlings in this soil. However, for this work to proceed in a way that would allow us to examine seed-colonizing communities on healthy plants, we needed to either physically treat soils or amend soils with composts to suppress damage from Pythium. In the end, we followed the compost amendment line of investigation, which took us away from our initial objectives, but led to interesting work focusing on seed-associated microbial communities and their functional significance to seed-infecting pathogens. Work done in Israel was using suppressive compost amended potting mix throughout the study and did not have such problems. Our work focused on the following objectives: 1) to determine whether different plant species support a microbial induced suppression of Pythium damping-off, 2) to determine whether compost microbes that colonize seeds during early stages of seed germination can adequately explain levels of damping-off suppression observed, 3) to characterize cucumber seed-colonizing microbial communities that give rise to the disease suppressive properties, 4) assess carbon competition between seed-colonizing microbes and Pythium sporangia as a means of explaining Pythium damping-off suppression. Background: Earlier work demonstrated that seed-colonizing microbes might explain Pythium suppression. Yet these seed-colonizing microbial communities have never been characterized and their functional significance to Pythium damping-off suppression is not known. Our work set out to confirm the disease suppressive properties of seed-colonizing microbes, to characterize communities, and begin to determine the mechanisms by which Pythium suppression occurs. Major Conclusions: Compost-induced suppression of Pythium damping-off of cucumber and wheat can be explained by the bacterial consortia colonizing seeds within 8 h of sowing. Suppression on pea was highly variable. Fungi and archaea play no role in disease suppression. Potentially significant bacterial taxa are those with affinities to Firmicutes, Actinobacteria, and Bacteroidetes. Current sequencing efforts are trying to resolve these taxa. Seed colonizing bacteria suppress Pythium by carbon competition, allowing sporangium germination by preventing the development of germ tubes. Presence of Pythium had a strong effect on microbial community on the seed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Duncan, David Sean. Linking soil microbiology and environmental conditions to variability in nitrous oxide production in bioenergy cropping systems. Office of Scientific and Technical Information (OSTI), Juli 2016. http://dx.doi.org/10.2172/1477790.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie