Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Soil biology.

Zeitschriftenartikel zum Thema „Soil biology“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Soil biology" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Holt, John. „Soil biology“. Geoderma 53, Nr. 1-2 (Mai 1992): 173–74. http://dx.doi.org/10.1016/0016-7061(92)90032-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tate, Robert L. „Soil Biology. 1989“. Soil Science 150, Nr. 5 (November 1990): 828. http://dx.doi.org/10.1097/00010694-199011000-00009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Valentine, Barry D. „Soil Biology Guide“. American Entomologist 38, Nr. 3 (1992): 181–82. http://dx.doi.org/10.1093/ae/38.3.181a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

New, T. R. „Soil biology guide“. Soil Biology and Biochemistry 23, Nr. 7 (Januar 1991): 707–8. http://dx.doi.org/10.1016/0038-0717(91)90088-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lehman, R. M., V. Acosta-Martinez, J. S. Buyer, C. A. Cambardella, H. P. Collins, T. F. Ducey, J. J. Halvorson et al. „Soil biology for resilient, healthy soil“. Journal of Soil and Water Conservation 70, Nr. 1 (01.01.2015): 12A—18A. http://dx.doi.org/10.2489/jswc.70.1.12a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Coleman, D. C., E. P. Odum und D. A. Crossley. „Soil biology, soil ecology, and global change“. Biology and Fertility of Soils 14, Nr. 2 (Oktober 1992): 104–11. http://dx.doi.org/10.1007/bf00336258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Robinson, Clare, F. Schinner, R. Ohlinger, E. Kandeler und R. Margesin. „Methods in Soil Biology.“ Journal of Ecology 85, Nr. 3 (Juni 1997): 404. http://dx.doi.org/10.2307/2960521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Edwards, Clive A. „Soil Biology. Tertiary Level Biology. Martin Wood“. Quarterly Review of Biology 66, Nr. 2 (Juni 1991): 224. http://dx.doi.org/10.1086/417204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lussenhop, John. „Soil Biology for Ecological Students“. Ecology 71, Nr. 6 (Dezember 1990): 2399. http://dx.doi.org/10.2307/1938658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Usher, M. B., P. Lebrun, H. M. Andre, A. De Medts, C. Gregoire-Wibo und G. Wauthy. „New Trends in Soil Biology“. Journal of Animal Ecology 54, Nr. 1 (Februar 1985): 337. http://dx.doi.org/10.2307/4644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Lynch, J. M. „Soil Biology: Accomplishments and Potential“. Soil Science Society of America Journal 51, Nr. 6 (November 1987): 1409–12. http://dx.doi.org/10.2136/sssaj1987.03615995005100060004x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mitchell, Myron J. „Soil Biology Guide.Daniel L. Dindal“. Quarterly Review of Biology 66, Nr. 1 (März 1991): 101–2. http://dx.doi.org/10.1086/417109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Anderson, J. M., und J. S. I. Ingram. „Tropical Soil Biology and Fertility“. Soil Science 157, Nr. 4 (April 1994): 265. http://dx.doi.org/10.1097/00010694-199404000-00012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Ohtonen, R., S. Aikio und H. Väre. „Ecological theories in soil biology“. Soil Biology and Biochemistry 29, Nr. 11-12 (November 1997): 1613–19. http://dx.doi.org/10.1016/s0038-0717(97)00063-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Geisen, Stefan, Edward A. D. Mitchell, Sina Adl, Michael Bonkowski, Micah Dunthorn, Flemming Ekelund, Leonardo D. Fernández et al. „Soil protists: a fertile frontier in soil biology research“. FEMS Microbiology Reviews 42, Nr. 3 (13.02.2018): 293–323. http://dx.doi.org/10.1093/femsre/fuy006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Mantoni, Cristina, Marika Pellegrini, Leonardo Dapporto, Maria Del Gallo, Loretta Pace, Donato Silveri und Simone Fattorini. „Comparison of Soil Biology Quality in Organically and Conventionally Managed Agro-Ecosystems Using Microarthropods“. Agriculture 11, Nr. 10 (19.10.2021): 1022. http://dx.doi.org/10.3390/agriculture11101022.

Der volle Inhalt der Quelle
Annotation:
Since management practices profoundly influence soil characteristics, the adoption of sustainable agro-ecological practices is essential for soil health conservation. We compared soil health in organic and conventional fields in the Abruzzi region (central Italy) by using (1) the soil biology quality (QBS) index (which expresses the level of specialisation in soil environment shown by microarthropods) and (2) microarthropod diversity expressed by Hill numbers. QBS values were calculated using both the original formulation based on only presence/absence data and a new abundance-based version. We found that organic management improves soil biology quality, which encourages the use of organic farming to maintain soil health. Including arthropod abundance in QBS calculation does not change the main outcomes, which supports the use of its original, speedier formulation. We also found that agricultural fields included in protected areas had greater soil health, which shows the importance of the matrix in determining agricultural soil health and highlights the importance of land protection in preserving biodiversity even in managed soils. Finally, we found that soil biology quality and microarthropod community structure are distinctly influenced by certain physical and chemical characteristics of the soil, which supports the use of microarthropods as biological indicators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

POP, Bianca, Roxana VIDICAN und Camelia MUNTEANU. „The Effects of Heavy Metals on Soil Biology“. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture 80, Nr. 1 (15.05.2023): 8–16. http://dx.doi.org/10.15835/buasvmcn-agr:2022.0019.

Der volle Inhalt der Quelle
Annotation:
Heavy metal pollution is a global environmental issue threatening food security and the environment. It is caused by the rapid growth of agriculture and industry. The development of new industries and the increasing number of people have also contributed to the rise in these conditions. Heavy metals that contaminate soils are mercury (Hg), cadmium (Cd), lead (Pb), and chromium (Cr), these toxic substances are retained by the soil and act as a filter for their properties. The aim of this paper was to review the impact of heavy metals on soil, as well as the methods to combat their toxicity in agricultural ones. In order to achieve this goal, data belonging to national and international databases were used (Science Direct, NCBI). The finding of different strategies to combat pollution, particularly on the soil represented the goals for the majority of the studies. As such, bioremediation is a promising choice to reduce heavy metal concentrations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Coyne, M. S., E. M. Pena-Yewtukhiw, J. H. Grove, A. C. Sant'Anna und D. Mata-Padrino. „Soil health – It's not all biology“. Soil Security 6 (März 2022): 100051. http://dx.doi.org/10.1016/j.soisec.2022.100051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Burns, R. „Soil Biology & Biochemistry Citation Classics“. Soil Biology and Biochemistry 36, Nr. 1 (Januar 2004): 3. http://dx.doi.org/10.1016/j.soilbio.2003.10.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Briggs, Winslow R. „Plant Biology: Seedling Emergence through Soil“. Current Biology 26, Nr. 2 (Januar 2016): R68—R70. http://dx.doi.org/10.1016/j.cub.2015.12.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Rao, D. L. N. „Experiments in soil biology and biochemistry“. Indian Journal of Microbiology 47, Nr. 2 (Juni 2007): 184. http://dx.doi.org/10.1007/s12088-007-0037-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

O’DONOVAN, J. T., und M. P. SHARMA. „THE BIOLOGY OF CANADIAN WEEDS.: 78. Galeopsis tetrahit L.“ Canadian Journal of Plant Science 67, Nr. 3 (01.07.1987): 787–96. http://dx.doi.org/10.4141/cjps87-106.

Der volle Inhalt der Quelle
Annotation:
Galeopsis tetrahit is an annual weed which was introduced to North America from Eurasia. It is present in all Canadian provinces and occupies a wide range of habitats including cultivated fields. It favors well-watered nutrient-rich soils and occurs infrequently in the drier brown soil zones of the southern Canadian prairies. Low soil moisture may be a major factor limiting its distribution and spread. It can reduce crop yields, contaminate crop seed and act as a reservoir for disease-causing organisms. A number of herbicides are available for its control.Key words: Hemp-nettle, Galeopsis tetrahit L., weed ecology, weed biology
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Forge, T., G. Neilsen, D. Neilsen, D. O'Gorman, E. Hogue und D. Angers. „ORGANIC ORCHARD SOIL MANAGEMENT PRACTICES AFFECT SOIL BIOLOGY AND ORGANIC MATTER“. Acta Horticulturae, Nr. 1076 (März 2015): 77–84. http://dx.doi.org/10.17660/actahortic.2015.1076.8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Bölter, Manfred. „Soil development and soil biology on King George Island, Maritime Antarctic“. Polish Polar Research 32, Nr. 2 (01.01.2011): 105–16. http://dx.doi.org/10.2478/v10183-011-0002-z.

Der volle Inhalt der Quelle
Annotation:
Soil development and soil biology on King George Island, Maritime AntarcticThis review covers aspects of soil science and soil biology of Antarctica with special focus on King George Island, South Shetlands, the martitime Antarctic. New approaches in soil descriptions and soil taxonomy show a great variety of soil types, related to different parent material, mainly volcanic origin, as well as on influences by soil biological processes. The spread of higher rooting plants attract microorganisms, nematodes and collemboles which in turn build new organic material and change the environment for further successors. Microbial communities are drivers with respect to metabolic and physiological properties indicating a great potential in a changing environment. The literature review also shows a lack of investigations on processes of carbon and nitrogen turnover, despite wide knowledge on its standing stock in different environments. Further, only few reports were found on the processes of humification. Only few data are available which can be regarded as long term monitorings, hence, such projects need to be established in order to follow ecological changes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Wong, J. W. C., K. M. Lai, M. Fang und K. K. Ma. „Soil Biology of Low Grade Landfill Soil with Sewage Sludge Amendment“. Environmental Technology 21, Nr. 11 (November 2000): 1233–38. http://dx.doi.org/10.1080/09593332108618149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Hüberli, Daniel. „Soil health, soil biology, soilborne diseases and sustainable agriculture: A guide“. Australasian Plant Pathology 46, Nr. 4 (19.05.2017): 387. http://dx.doi.org/10.1007/s13313-017-0493-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Vilkova, Valeria, Kamil Kazeev, Aslan Shkhapatsev, Mikhail Nizhelsky und Sergey Kolesnikov. „Pyrogenic impact on biology activity of chernozem in model experiments“. АгроЭкоИнфо 5, Nr. 47 (24.10.2021): 20. http://dx.doi.org/10.51419/20215520.

Der volle Inhalt der Quelle
Annotation:
The influence of the pyrogenic effect on the biological properties of Haplic chernozem was investigated. For this, a series of model experiments was set up to simulate fires of various duration and intensity. A significant change in the biological properties of soils was found, as well as differences in the reactions of biological indicators to the pyrogenic effect. In different experiments, a different nature of changes in the reaction of the soil environment and the content of organic carbon, an increase in the content of readily soluble salts, was established. In all experiments, inhibition of catalase activity was noted, changes in peroxidase activity were more contradictory. In one of the experiments, stimulation of peroxidase activity was found. In order to study the methods of restoring the biological activity of post-pyrogenic soils, a model experiment was carried out using potassium humate, complex mineral fertilizer and phytoremediation. At the same time, no unambiguous results were obtained that would make it possible to recommend methods for the accelerated recovery of post-pyrogenic soils. Keywords: BIODIAGNOSTICS, FIRES, POSTPYROGENIC SOILS, ENZYME ACTIVITY, SOIL RESTORATION
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Bhunia, Shantanu, Ankita Bhowmik, Rambilash Mallick und Joydeep Mukherjee. „Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review“. Agronomy 11, Nr. 5 (22.04.2021): 823. http://dx.doi.org/10.3390/agronomy11050823.

Der volle Inhalt der Quelle
Annotation:
Healthy soils are essential for progressive agronomic activities. Organic fertilization positively affects agro-ecosystems by stimulating plant growth, enhancing crop productivity and fruit quality and improving soil fertility. Soil health and food security are the key elements of Organic Agriculture 3.0. Landfilling and/or open-dumping of animal wastes produced from slaughtering cause environmental pollution by releasing toxic substances, leachate and greenhouse gases. Direct application of animal carcasses to agricultural fields can adversely affect soil microbiota. Effective waste management technologies such as thermal drying, composting, vermicomposting and anaerobic digestion transform animal wastes, making them suitable for soil application by supplying soil high in organic carbon and total nitrogen. Recent agronomic practices applied recycled animal wastes as organic fertilizer in crop production. However, plants may not survive at a high fertilization rate due to the presence of labile carbon fraction in animal wastes. Therefore, dose calculation and determination of fertilizer application frequency are crucial for agronomists. Long-term animal waste-derived organic supplementation promotes copiotrophic microbial abundance due to enhanced substrate affinity, provides micronutrients to soils and protects crops from soil-borne pathogens owing to formation of plant-beneficial microbial consortia. Animal waste-derived organically fertilized soils possess higher urease and acid phosphatase activities. Furthermore, waste to fertilizer conversion is a low-energy requiring process that promotes circular bio-economy. Thus, considering the promotion of soil fertility, microbial abundance, disease protection and economic considerations application of animal-waste-derived organic fertilizer should be the mainstay for sustainable agriculture.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Blagodatsky, Sergey, und Pete Smith. „Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil“. Soil Biology and Biochemistry 47 (April 2012): 78–92. http://dx.doi.org/10.1016/j.soilbio.2011.12.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Wyatt, Briana, und Susan Chapman. „Soil Biology, Chemistry, and Physics … Oh My!“ CSA News 66, Nr. 6 (30.05.2021): 44. http://dx.doi.org/10.1002/csan.20485.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Uroz, S., A. Bispo, M. Buee, A. Cebron, J. Cortet, T. Decaens, M. Hedde, G. Peres, M. Vennetier und C. Villenave. „Highlights on progress in forest soil biology“. Revue Forestière Française, SP (2014): Fr.], ISSN 0035. http://dx.doi.org/10.4267/2042/56266.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Creamer, R. E. „The Biology of Soil - by R.D. Bardgett“. European Journal of Soil Science 58, Nr. 5 (Oktober 2007): 1214. http://dx.doi.org/10.1111/j.1365-2389.2007.00943_2.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Andrén, O., H. Kirchmann, T. Kätterer, J. Magid, E. A. Paul und D. C. Coleman. „Visions of a more precise soil biology“. European Journal of Soil Science 59, Nr. 2 (April 2008): 380–90. http://dx.doi.org/10.1111/j.1365-2389.2008.01018.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

BURNS, R. „Soil Biology & Biochemistry Citation Classic IV“. Soil Biology and Biochemistry 38, Nr. 9 (September 2006): 2509. http://dx.doi.org/10.1016/j.soilbio.2006.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic VI“. Soil Biology and Biochemistry 41, Nr. 10 (Oktober 2009): 2029–30. http://dx.doi.org/10.1016/j.soilbio.2009.07.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic VII“. Soil Biology and Biochemistry 42, Nr. 9 (September 2010): 1361–62. http://dx.doi.org/10.1016/j.soilbio.2010.05.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic VIII“. Soil Biology and Biochemistry 42, Nr. 12 (Dezember 2010): 2037–38. http://dx.doi.org/10.1016/j.soilbio.2010.08.028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic IX“. Soil Biology and Biochemistry 43, Nr. 5 (Mai 2011): 871–72. http://dx.doi.org/10.1016/j.soilbio.2011.01.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic X“. Soil Biology and Biochemistry 43, Nr. 8 (August 2011): 1619–20. http://dx.doi.org/10.1016/j.soilbio.2011.03.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic XI“. Soil Biology and Biochemistry 64 (September 2013): 200–202. http://dx.doi.org/10.1016/j.soilbio.2012.09.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic XII“. Soil Biology and Biochemistry 68 (Januar 2014): A1—A3. http://dx.doi.org/10.1016/j.soilbio.2013.09.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Szegi, J. „Soil Biology and Conservation of the Biosphere“. Soil Science 141, Nr. 3 (März 1986): 245. http://dx.doi.org/10.1097/00010694-198603000-00012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic XIII“. Soil Biology and Biochemistry 80 (Januar 2015): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2014.10.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic XIV“. Soil Biology and Biochemistry 105 (Februar 2017): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2016.08.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic XV“. Soil Biology and Biochemistry 121 (Juni 2018): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2018.01.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic XVI“. Soil Biology and Biochemistry 123 (August 2018): A1—A2. http://dx.doi.org/10.1016/j.soilbio.2018.03.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Burns, Richard G. „Soil Biology & Biochemistry Citation Classic XVII“. Soil Biology and Biochemistry 147 (August 2020): 107818. http://dx.doi.org/10.1016/j.soilbio.2020.107818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Burns, Richard G. „Soil Biology & Biochemistry Citation Classics II“. Soil Biology and Biochemistry 36, Nr. 9 (September 2004): 1367. http://dx.doi.org/10.1016/j.soilbio.2004.06.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Burns, Richard G. „Soil Biology & Biochemistry Citation Classics III“. Soil Biology and Biochemistry 37, Nr. 5 (Mai 2005): 809. http://dx.doi.org/10.1016/j.soilbio.2004.12.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Murphy, Daniel V., John A. Kirkegaard und Pauline M. Mele. „Preface: Soil biology in Australian farming systems“. Soil Research 44, Nr. 4 (2006): I. http://dx.doi.org/10.1071/srv44n4_pr.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie