Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Soft-tissue marine biological pump“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Soft-tissue marine biological pump" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Soft-tissue marine biological pump"
Galbraith, Eric D., und Luke C. Skinner. „The Biological Pump During the Last Glacial Maximum“. Annual Review of Marine Science 12, Nr. 1 (03.01.2020): 559–86. http://dx.doi.org/10.1146/annurev-marine-010419-010906.
Der volle Inhalt der QuelleSwann, G. E. A., und A. M. Snelling. „Photic zone changes in the North West Pacific Ocean from MIS 4-5e“. Climate of the Past Discussions 10, Nr. 4 (29.08.2014): 3631–60. http://dx.doi.org/10.5194/cpd-10-3631-2014.
Der volle Inhalt der QuelleSwann, G. E. A., und A. M. Snelling. „Photic zone changes in the north-west Pacific Ocean from MIS 4–5e“. Climate of the Past 11, Nr. 1 (06.01.2015): 15–25. http://dx.doi.org/10.5194/cp-11-15-2015.
Der volle Inhalt der Quellede Boer, A. M., A. J. Watson, N. R. Edwards und K. I. C. Oliver. „A multi-variable box model approach to the soft tissue carbon pump“. Climate of the Past 6, Nr. 6 (21.12.2010): 827–41. http://dx.doi.org/10.5194/cp-6-827-2010.
Der volle Inhalt der QuelleAlthagbi, Hanan I., Walied M. Alarif, Khalid O. Al-Footy und Ahmed Abdel-Lateff. „Marine-Derived Macrocyclic Alkaloids (MDMAs): Chemical and Biological Diversity“. Marine Drugs 18, Nr. 7 (17.07.2020): 368. http://dx.doi.org/10.3390/md18070368.
Der volle Inhalt der QuelleLabes, Antje. „Marine Resources Offer New Compounds and Strategies for the Treatment of Skin and Soft Tissue Infections“. Marine Drugs 21, Nr. 7 (29.06.2023): 387. http://dx.doi.org/10.3390/md21070387.
Der volle Inhalt der QuelleRaff, Rudolf A., und Elizabeth C. Raff. „The Role of Biology in the Fossilization of Embryos and Other Soft-Bodied Organisms: Microbial Biofilms and Lagerstätten“. Paleontological Society Papers 20 (Oktober 2014): 83–100. http://dx.doi.org/10.1017/s1089332600002813.
Der volle Inhalt der QuelleKhatiwala, S., A. Schmittner und J. Muglia. „Air-sea disequilibrium enhances ocean carbon storage during glacial periods“. Science Advances 5, Nr. 6 (Juni 2019): eaaw4981. http://dx.doi.org/10.1126/sciadv.aaw4981.
Der volle Inhalt der QuelleSchmidt, Charlotte Vinther, und Ole G. Mouritsen. „Cephalopods as Challenging and Promising Blue Foods: Structure, Taste, and Culinary Highlights and Applications“. Foods 11, Nr. 17 (24.08.2022): 2559. http://dx.doi.org/10.3390/foods11172559.
Der volle Inhalt der QuelleKang, Moon Sung, Hyo Jung Jo, Hee Jeong Jang, Bongju Kim, Tae Gon Jung und Dong-Wook Han. „Recent Advances in Marine Biomaterials Tailored and Primed for the Treatment of Damaged Soft Tissues“. Marine Drugs 21, Nr. 12 (25.11.2023): 611. http://dx.doi.org/10.3390/md21120611.
Der volle Inhalt der QuelleDissertationen zum Thema "Soft-tissue marine biological pump"
Sabourdy, Manon. „Nouvelles approches moléculaires pour étudier le rôle de l’activité phytoplanctonique sur le climat et les écosystèmes dans l’océan Austral“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0450.
Der volle Inhalt der QuelleThe biological pump of the Southern Ocean (BPSO) is a key component of a highly sensitive and rapidly changing food web. It also serves as an efficient mechanism for sequestering anthropogenic CO₂. Over past climate cycles, it has played a critical role in regulating atmospheric CO₂ concentrations. Despite its importance, the future of the BPSO remains uncertain, given the discrepancies between various projections for the coming century. This uncertainty largely stems from the limited data available beyond the instrumental record, which for the Antarctic region only spans the last few decades and the lack of previous studies on soft-tissue phytoplankton communities (non-fossilizable) in past environmental contexts. It is therefore essential to study past climate archives to better understand the evolution of the BPSO and its relationship with oceanic, atmospheric, and sea-ice conditions over the past millennia. For the first time, ancient sedimentary DNA (sedaDNA) sequences combined with lipid biomarker data offer insight into the distribution and evolution of phytoplankton communities in relation to environmental conditions in the Antarctic Peninsula (AP) region during the Holocene. The soft-tissue phytoplankton identified primarily belong to the divisions Stramenopiles, Cryptophytes, and Chlorophytes, with regional and temporal variations. From the early to mid-Holocene (8,000 to 4,000 years BP), conditions were generally warmer, leading to open ocean zones where primary production was dominated by diatoms (85-95% of the total phytoplankton), with a significant proportion of Cryptophytes (~50%) among the soft-bodied organisms. Over the past 4,000 years BP, ocean conditions showed cooling and an extension of the sea-ice season. Primary productivity increased, primarily driven by higher siliceous productivity, with diatom abundances exceeding 95% of total phytoplankton, while the contribution of soft-tissue phytoplankton decreased but became more diverse with the emergence of Chlorophytes alongside Cryptophytes. The study of the last millennium revealed a transition from natural conditions to an environment altered by current climate changes. The last 1,000 years BP were relatively cold, often associated with strong sea-ice conditions. Primary productivity declined, accompanied by a reduction in diatom contributions and an increase in soft-tissue organisms' role in carbon export to sediments. Finally, since 1850 CE (the post-industrial period), warming sea subsurface temperatures (by 0.3 ± 0.6°C) and reduced winter sea-ice cover have led to a sharp increase in the proportion of Cryptophytes (+10%) at the expense of diatoms. In this context, phytoplankton community compositions have already begun to change and now resemble those observed during the mid-Holocene. If this trend continues, diatoms could be progressively replaced by soft-tissue organisms, which are less efficient at exporting organic carbon to sediments, thereby reducing the long-term CO₂ sequestration capacity of the BPSO in the Antarctic Peninsula region
Buchteile zum Thema "Soft-tissue marine biological pump"
Gray, John S., und Michael Elliott. „Human impacts on soft-sediment systems—pollution“. In Ecology of Marine Sediments. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780198569015.003.0013.
Der volle Inhalt der Quelle