Zeitschriftenartikel zum Thema „SOECs“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "SOECs" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Dragan, Mirela. „Closing the Loop: Solid Oxide Fuel and Electrolysis Cells Materials for a Net-Zero Economy“. Materials 17, Nr. 24 (13.12.2024): 6113. https://doi.org/10.3390/ma17246113.
Der volle Inhalt der QuelleYoon, Kyung Joong. „(Invited) Degradation Mechanisms and Mitigation Strategies for High-Temperature Solid Oxide Cells“. ECS Meeting Abstracts MA2024-02, Nr. 48 (22.11.2024): 3367. https://doi.org/10.1149/ma2024-02483367mtgabs.
Der volle Inhalt der QuelleNagatomo, Yohei, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda und Kazunari Sasaki. „Distribution of Relaxation Times of Fuel Electrodes for Reversible Solid Oxide Cells Fabricated Under Various Conditions“. ECS Transactions 112, Nr. 5 (29.09.2023): 121–28. http://dx.doi.org/10.1149/11205.0121ecst.
Der volle Inhalt der QuelleIkegawa, Kazutaka, Kengo Miyara, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda und Kazunari Sasaki. „Performance and Durability of Solid Oxide Electrolysis Cell Air Electrodes Prepared By Various Conditions“. ECS Transactions 109, Nr. 11 (30.09.2022): 71–78. http://dx.doi.org/10.1149/10911.0071ecst.
Der volle Inhalt der QuelleToriumi, Hajime, Katherine Develos Bagarinao, Haruo Kishimoto und Toshiaki Yamaguchi. „Effect of SOEC Operating Conditions on the YSZ Electrolyte Conductivity“. ECS Meeting Abstracts MA2024-02, Nr. 48 (22.11.2024): 3431. https://doi.org/10.1149/ma2024-02483431mtgabs.
Der volle Inhalt der QuelleYang, Zhibin, Ze Lei, Ben Ge, Xingyu Xiong, Yiqian Jin, Kui Jiao, Fanglin Chen und Suping Peng. „Development of catalytic combustion and CO2 capture and conversion technology“. International Journal of Coal Science & Technology 8, Nr. 3 (Juni 2021): 377–82. http://dx.doi.org/10.1007/s40789-021-00444-2.
Der volle Inhalt der QuelleWachsman, Eric. „(Invited) Achieving Extreme High Ion-Current Densities in Tailored Materials, Structures, and Interfaces“. ECS Meeting Abstracts MA2023-02, Nr. 46 (22.12.2023): 3224. http://dx.doi.org/10.1149/ma2023-02463224mtgabs.
Der volle Inhalt der QuelleLi, Shian, Zhi Yang, Qiuwan Shen und Guogang Yang. „A Parametric Study on the Interconnector of Solid Oxide Electrolysis Cells for Co-Electrolysis of Water and Carbon Dioxide“. Journal of Marine Science and Engineering 11, Nr. 5 (17.05.2023): 1066. http://dx.doi.org/10.3390/jmse11051066.
Der volle Inhalt der QuelleZhang, Chi, Bin Lu, Haiji Xiong, Chengjun Lin, Lin Fang, Jile Fu, Dingrong Deng, Xiaohong Fan, Yi Li und Qi-Hui Wu. „Cobalt-Based Perovskite Electrodes for Solid Oxide Electrolysis Cells“. Inorganics 10, Nr. 11 (28.10.2022): 187. http://dx.doi.org/10.3390/inorganics10110187.
Der volle Inhalt der QuelleWilliams, Mark. „Total Energy and Total Power for the SOEC: Critical Role of Area Specific Resistance in Hydrogen Production Rate“. ECS Transactions 112, Nr. 5 (29.09.2023): 61–66. http://dx.doi.org/10.1149/11205.0061ecst.
Der volle Inhalt der QuelleNaughton, Matthew, Yuchen Zhang, Quanwen Sun, Zeyu Zhao, Wei Wu, Yushan Yan und Dong Ding. „Proton-Conducting Solid Oxide Electrolysis Cells with Scandia-Doped Barium Zirconate Electrolytes“. ECS Meeting Abstracts MA2024-02, Nr. 48 (22.11.2024): 3338. https://doi.org/10.1149/ma2024-02483338mtgabs.
Der volle Inhalt der QuelleZhang, Qian, Dalton Cox, Clarita Yosune Regalado Vera, Hanping Ding, Wei Tang, Sicen Du, Alexander F. Chadwick et al. „Interface Problems in Solid Oxide Electrolysis Cells“. ECS Meeting Abstracts MA2022-02, Nr. 47 (09.10.2022): 2425. http://dx.doi.org/10.1149/ma2022-02472425mtgabs.
Der volle Inhalt der QuelleFluri, A., H. Kusaba, J. Druce, M. Döbeli, T. Lippert, J. Matsuda und T. Ishihara. „Strain effects on the Co oxidation state and the oxygen dissociation activity in barium lanthanum cobaltite thin films on Y2O3 stabilized ZrO2“. Journal of Materials Chemistry A 8, Nr. 13 (2020): 6283–90. http://dx.doi.org/10.1039/c9ta13142f.
Der volle Inhalt der QuelleZhao, Jianguo, Zihan Lin und Mingjue Zhou. „Three-Dimensional Modeling and Performance Study of High Temperature Solid Oxide Electrolysis Cell with Metal Foam“. Sustainability 14, Nr. 12 (09.06.2022): 7064. http://dx.doi.org/10.3390/su14127064.
Der volle Inhalt der QuellePark, Hunmin, Sun-Dong Kim und Yoonseok Choi. „Enhanced Durability and Performance of SOEC Stacks at Intermediate-Low Temperature Operation“. ECS Meeting Abstracts MA2024-02, Nr. 46 (22.11.2024): 3230. https://doi.org/10.1149/ma2024-02463230mtgabs.
Der volle Inhalt der QuelleRiyad, M. Faisal, Mohammadreza Mahmoudi und Majid Minary-Jolandan. „Manufacturing and Thermal Shock Characterization of Porous Yttria Stabilized Zirconia for Hydrogen Energy Systems“. Ceramics 5, Nr. 3 (22.08.2022): 472–83. http://dx.doi.org/10.3390/ceramics5030036.
Der volle Inhalt der QuelleWang, Wanhua, Wei Wu, Zeyu Zhao, Hanping Ding, Fanglin (Frank) (Frank) Chen und Dong Ding. „New Observations on Material Processing and Investigation on Long Term Stability for Proton Conducting Solid Oxide Electrolysis Cells (P-SOEC)“. ECS Meeting Abstracts MA2024-02, Nr. 48 (22.11.2024): 3335. https://doi.org/10.1149/ma2024-02483335mtgabs.
Der volle Inhalt der QuelleLee, Seokhee, Sang Won Lee, Suji Kim und Tae Ho Shin. „Recent Advances in High Temperature Electrolysis Cells using LaGaO3-based Electrolyte“. Ceramist 24, Nr. 4 (31.12.2021): 424–37. http://dx.doi.org/10.31613/ceramist.2021.24.4.06.
Der volle Inhalt der QuelleLee, Seokhee, Sang Won Lee, Suji Kim und Tae Ho Shin. „Recent Advances in High Temperature Electrolysis Cells using LaGaO3-based Electrolyte“. Ceramist 24, Nr. 4 (31.12.2021): 424–37. http://dx.doi.org/10.31613/ceramist.2021.24.4.42.
Der volle Inhalt der QuelleZhang, Qian, Clarita Y. Regalado Vera, Hanping Ding, Wei Tang, Wei Wu, Scott A. Barnett, Peter W. Voorhees und Dong Ding. „Dependence of Faraday Efficiency on Operation Conditions and Cell Properties for Proton Ceramic Electrolysis Cells“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 186. http://dx.doi.org/10.1149/ma2023-0154186mtgabs.
Der volle Inhalt der QuelleOkamoto, Takeaki, Masahiro Yasutake, Yuya Tachikawa und Kazunari Sasaki. „In-Situ Observation of Temperature Distribution on a Planar Type SOEC During Start-Stop Cycle Operation“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 33. http://dx.doi.org/10.1149/ma2023-015433mtgabs.
Der volle Inhalt der QuelleHernández, E., F. Baiutti, A. Morata, M. Torrell und A. Tarancón. „Infiltrated mesoporous oxygen electrodes for high temperature co-electrolysis of H2O and CO2 in solid oxide electrolysis cells“. Journal of Materials Chemistry A 6, Nr. 20 (2018): 9699–707. http://dx.doi.org/10.1039/c8ta01045e.
Der volle Inhalt der QuelleEndo, Naoki, Takuro Fukumoto, Yuya Tachikawa, Stephen Matthew Lyth, Junko Matsuda und Kazunari Sasaki. „Polarization Resistance of Ceria-Containing Fuel Electrodes in Solid Oxide Cells Studied By Impedance and DRT Analysis“. ECS Transactions 109, Nr. 11 (30.09.2022): 3–13. http://dx.doi.org/10.1149/10911.0003ecst.
Der volle Inhalt der QuelleDuranti, Leonardo, Anna Paola Panunzi, Umer Draz, Cadia D'Ottavi, Silvia Licoccia und Elisabetta Di Bartolomeo. „Pt-Doped Lanthanum Ferrites as Versatile Electrode Material for Solid Oxide Cells“. ECS Transactions 111, Nr. 6 (19.05.2023): 2425–33. http://dx.doi.org/10.1149/11106.2425ecst.
Der volle Inhalt der QuelleHauch, A., R. Küngas, P. Blennow, A. B. Hansen, J. B. Hansen, B. V. Mathiesen und M. B. Mogensen. „Recent advances in solid oxide cell technology for electrolysis“. Science 370, Nr. 6513 (08.10.2020): eaba6118. http://dx.doi.org/10.1126/science.aba6118.
Der volle Inhalt der QuelleNakashima, Yuhei, Yuya Tachikawa und Kanzunari Sasaki. „Design Optimization of Highly Efficient SOEC Co-Electrolysis Processes“. ECS Transactions 109, Nr. 11 (30.09.2022): 25–35. http://dx.doi.org/10.1149/10911.0025ecst.
Der volle Inhalt der QuelleWen, Yeting, Yongliang Zhang und Kevin Huang. „Solid Oxide Iron-Air Battery for Long-Duration Energy Storage: A Study on Reduction Kinetics of Energy Storage Material Fe-ZrO2 Catalyzed By Ir Particles“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 99. http://dx.doi.org/10.1149/ma2023-015499mtgabs.
Der volle Inhalt der QuelleKan, Wang Hay, Alfred Junio Samson und Venkataraman Thangadurai. „Trends in electrode development for next generation solid oxide fuel cells“. Journal of Materials Chemistry A 4, Nr. 46 (2016): 17913–32. http://dx.doi.org/10.1039/c6ta06757c.
Der volle Inhalt der QuelleLo Faro, Massimiliano, Sabrina Campagna Zignani, Sebastian Vecino-Mantilla, Giuseppe Monforte und Antonino Arico. „Co-Electrolysis of CO2 and H2O Using an Exsoluted Perovskite Layer“. ECS Transactions 111, Nr. 6 (19.05.2023): 241–48. http://dx.doi.org/10.1149/11106.0241ecst.
Der volle Inhalt der QuelleMinary-Jolandan, Majid. „Formidable Challenges in Additive Manufacturing of Solid Oxide Electrolyzers (SOECs) and Solid Oxide Fuel Cells (SOFCs) for Electrolytic Hydrogen Economy toward Global Decarbonization“. Ceramics 5, Nr. 4 (14.10.2022): 761–79. http://dx.doi.org/10.3390/ceramics5040055.
Der volle Inhalt der QuelleKim, Suji, Sang Won Lee, Seok Hee Lee, Jong Hak Kim und Tae Ho Shin. „Revolutionizing Hydrogen Production with LSGM-Based Solid Oxide Electrolysis Cells: An Innovative Approach to Green Energy Generation“. ECS Meeting Abstracts MA2023-01, Nr. 40 (28.08.2023): 2811. http://dx.doi.org/10.1149/ma2023-01402811mtgabs.
Der volle Inhalt der QuelleAfroze, Shammya, Amal Najeebah Shalihah Binti Sofri, Md Sumon Reza, Zhanar Baktybaevna Iskakova, Asset Kabyshev, Kairat A. Kuterbekov, Kenzhebatyr Z. Bekmyrza, Lidiya Taimuratova, Mohammad Rakib Uddin und Abul K. Azad. „Solar-Powered Water Electrolysis Using Hybrid Solid Oxide Electrolyzer Cell (SOEC) for Green Hydrogen—A Review“. Energies 16, Nr. 23 (27.11.2023): 7794. http://dx.doi.org/10.3390/en16237794.
Der volle Inhalt der QuelleLee, John-In, Emily Ghosh, Jillian Rix Mulligan, Ayesha Akter, Uday Pal, Soumendra Basu und Srikanth Gopalan. „Influence of Process Parameters on SOEC Performance“. ECS Transactions 111, Nr. 6 (19.05.2023): 1975–86. http://dx.doi.org/10.1149/11106.1975ecst.
Der volle Inhalt der QuelleHossain, Md Jamil, Gorakh Machindranath Pawar, Prashik Gaikwad, Yun Kyung Shin, Jessica Schulze, Kate Penrod und Adri van Duin. „An Atomic Scale Simulation Framework to Decipher the Complex, High-Temperature Solid Oxide Electrolysis Cell Electro-Chemistries“. ECS Meeting Abstracts MA2023-01, Nr. 40 (28.08.2023): 2799. http://dx.doi.org/10.1149/ma2023-01402799mtgabs.
Der volle Inhalt der QuelleSone, Yurika, Kazuyoshi Sato, Toshiaki Yamaguchi und Haruo Kishimoto. „Fabrication of SOECs Hydrogen Electrode Active Layer Using Liquid Phase Grown NiO/YSZ Nanocomposite Particles“. ECS Meeting Abstracts MA2024-02, Nr. 48 (22.11.2024): 3423. https://doi.org/10.1149/ma2024-02483423mtgabs.
Der volle Inhalt der QuellePrice, Robert, Aida Fuente Cuesta, Holger Bausinger, Gino Longo, Jan Gustav Grolig, Andreas Mai und John Irvine. „Evaluation and Upscaling of Impregnated La0.20Sr0.25Ca0.45TiO3 Fuel Electrodes for Solid Oxide Electrolysis Cells Under H2O, CO2 and Co-Electrolysis Conditions“. ECS Transactions 111, Nr. 6 (19.05.2023): 899–913. http://dx.doi.org/10.1149/11106.0899ecst.
Der volle Inhalt der QuelleOh, Min Jun, und Sungeun Yang. „Opportunities and challenges in co-electrolysis with a focus on downstream processing“. Ceramist 27, Nr. 4 (31.12.2024): 415–32. https://doi.org/10.31613/ceramist.2024.00143.
Der volle Inhalt der QuelleTezel, Elif, Dezhou Guo, Ariel Whitten, Genevieve Yarema, Maikon Freire, Reinhard Denecke, Jean-Sabin McEwen und Eranda Nikolla. „Elucidating the Role of B-Site Cations toward CO2 Reduction in Perovskite-Based Solid Oxide Electrolysis Cells“. Journal of The Electrochemical Society 169, Nr. 3 (01.03.2022): 034532. http://dx.doi.org/10.1149/1945-7111/ac5e9b.
Der volle Inhalt der QuelleAdjah-Tetteh, Christabel, Yudong Wang, Yanhua Sun, Zhiyong Jia, Xingwen Yu und Xiao-Dong Zhou. „A Solid Oxide Electrolysis Cell (SOEC) with High Current Density and Energy Efficiency for Hydrogen Production“. ECS Meeting Abstracts MA2022-02, Nr. 49 (09.10.2022): 1956. http://dx.doi.org/10.1149/ma2022-02491956mtgabs.
Der volle Inhalt der QuelleRowberg, Andrew, Heather S. Slomski, Namhoon Kim, Nicholas A. Strange, Brian Gorman, Sarah Shulda, David Ginley, Kyoung E. Kweon und Brandon C. Wood. „(Invited) Impact of Sr-Containing Secondary Phases on Oxide Conductivity in Solid-Oxide Electrolyzer Cells“. ECS Meeting Abstracts MA2024-02, Nr. 48 (22.11.2024): 3349. https://doi.org/10.1149/ma2024-02483349mtgabs.
Der volle Inhalt der QuelleDu, Yanhai, Theo Woodson und Dhruba Panthi. „Fabrication and Characterization of Freeze-Cast Tubular Solid Oxide Cells“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 160. http://dx.doi.org/10.1149/ma2023-0154160mtgabs.
Der volle Inhalt der QuelleDu, Yanhai, Theo Woodson und Dhruba Panthi. „Fabrication and Characterization of Freeze-Cast Tubular Solid Oxide Cells“. ECS Transactions 111, Nr. 6 (19.05.2023): 1043–55. http://dx.doi.org/10.1149/11106.1043ecst.
Der volle Inhalt der QuelleMacalisang, Christine Mae, und Rinlee Butch M. Cervera. „Screen-Printing of NiO-ScSZ on YSZ Substrate Using Solid-State Reaction and Glycine-Nitrate Process Precursors for Solid Oxide Electrochemical Cells“. Key Engineering Materials 950 (31.07.2023): 93–98. http://dx.doi.org/10.4028/p-r9pdjg.
Der volle Inhalt der QuelleShan, Fei, Tao Chen, Lingting Ye und Kui Xie. „Ni–Doped Pr0.7Ba0.3MnO3−δ Cathodes for Enhancing Electrolysis of CO2 in Solid Oxide Electrolytic Cells“. Molecules 29, Nr. 18 (21.09.2024): 4492. http://dx.doi.org/10.3390/molecules29184492.
Der volle Inhalt der QuelleHoriguchi, Genki, Toshiaki Yamaguchi, Hiroyuki Tateno, Katherine Develos Bagarinao, Haruo Kishimoto und Takehisa Mochizuki. „Preparation of Ni/YSZ Catalysts for Application of Solid Oxide Electrolysis Cell Methanation“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 57. http://dx.doi.org/10.1149/ma2023-015457mtgabs.
Der volle Inhalt der QuelleWang, Dewei, Jie Bao, Christopher Coyle und Olga A. Marina. „Multi-Physics Modeling and the Sensitivity Analysis for the Critical Factors in Solid Oxide CO2-Steam Co-Electrolysis System Performances“. ECS Meeting Abstracts MA2024-01, Nr. 37 (09.08.2024): 2249. http://dx.doi.org/10.1149/ma2024-01372249mtgabs.
Der volle Inhalt der QuellePrice, Robert, Aida Fuente Cuesta, Holger Bausinger, Gino Longo, Jan Gustav Grolig, Andreas Mai und John Irvine. „Evaluation and Upscaling of Impregnated La0.20Sr0.25Ca0.45TiO3 Fuel Electrodes for Solid Oxide Electrolysis Cells Under H2O, CO2 and Co-Electrolysis Conditions“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 141. http://dx.doi.org/10.1149/ma2023-0154141mtgabs.
Der volle Inhalt der QuelleHuang, Kevin. „(Invited) Enabling Materials for Intermediate Temperature Solid Oxide Electrolyzers“. ECS Meeting Abstracts MA2024-02, Nr. 48 (22.11.2024): 3455. https://doi.org/10.1149/ma2024-02483455mtgabs.
Der volle Inhalt der QuelleBervian, A., Matias Angelis Korb, I. D. Savaris, G. A. Ludwig, L. S. Barreto, G. Gauthier und Célia de Fraga Malfatti. „Phases Obtained from Heat Treatment of Mn-Co-Based Coatings Deposited by Dip Coating“. Materials Science Forum 798-799 (Juni 2014): 323–27. http://dx.doi.org/10.4028/www.scientific.net/msf.798-799.323.
Der volle Inhalt der QuelleLee, John-In, Emily Ghosh, Jillian Rix Mulligan, Ayesha Akter, Uday Pal, Soumendra Basu und Srikanth Gopalan. „Influence of Process Parameters on SOEC Performance“. ECS Meeting Abstracts MA2023-01, Nr. 54 (28.08.2023): 309. http://dx.doi.org/10.1149/ma2023-0154309mtgabs.
Der volle Inhalt der Quelle