Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SncRNA silencing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SncRNA silencing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SncRNA silencing"
Carmi, Ofira, Yosef Gotlieb, Yonat Shemer-Avni und Zvi Bentwich. „The Role of HIV-1-Encoded microRNAs in Viral Replication“. Microorganisms 12, Nr. 3 (20.02.2024): 425. http://dx.doi.org/10.3390/microorganisms12030425.
Der volle Inhalt der QuelleAlsaadi, Mohammed, Muhammad Yasir Khan, Mahmood Hassan Dalhat, Salem Bahashwan, Muhammad Uzair Khan, Abdulgader Albar, Hussein Almehdar und Ishtiaq Qadri. „Dysregulation of miRNAs in DLBCL: Causative Factor for Pathogenesis, Diagnosis and Prognosis“. Diagnostics 11, Nr. 10 (22.09.2021): 1739. http://dx.doi.org/10.3390/diagnostics11101739.
Der volle Inhalt der QuelleDi Fazio, Arianna, Margarita Schlackow, Sheng Kai Pong, Adele Alagia und Monika Gullerova. „Dicer dependent tRNA derived small RNAs promote nascent RNA silencing“. Nucleic Acids Research 50, Nr. 3 (20.01.2022): 1734–52. http://dx.doi.org/10.1093/nar/gkac022.
Der volle Inhalt der QuelleHuang, Songqian, Kazutoshi Yoshitake und Shuichi Asakawa. „A Review of Discovery Profiling of PIWI-Interacting RNAs and Their Diverse Functions in Metazoans“. International Journal of Molecular Sciences 22, Nr. 20 (16.10.2021): 11166. http://dx.doi.org/10.3390/ijms222011166.
Der volle Inhalt der QuelleShen, Dong-Fang, Hui-Ping Qi, Wei-Na Zhang und Wen-Xu Sang. „Resveratrol Promotes Autophagy to Improve neuronal Injury in Parkinson’s Disease by Regulating SNHG1/miR-128-3p/SNCA Axis“. Brain Sciences 13, Nr. 8 (25.07.2023): 1124. http://dx.doi.org/10.3390/brainsci13081124.
Der volle Inhalt der QuelleChowdhury, Anisa, und Anto P. Rajkumar. „Systematic review of gene expression studies in people with Lewy body dementia“. Acta Neuropsychiatrica 32, Nr. 6 (17.03.2020): 281–92. http://dx.doi.org/10.1017/neu.2020.13.
Der volle Inhalt der QuelleRyskalin, Larisa, Rosangela Ferese, Gabriele Morucci, Francesca Biagioni, Carla L. Busceti, Fabrizio Michetti, Paola Lenzi, Alessandro Frati und Francesco Fornai. „Occurrence of Total and Proteinase K-Resistant Alpha-Synuclein in Glioblastoma Cells Depends on mTOR Activity“. Cancers 14, Nr. 6 (08.03.2022): 1382. http://dx.doi.org/10.3390/cancers14061382.
Der volle Inhalt der QuelleSmith, Chase H., Raquel Mejia-Trujillo, Sophie Breton, Brendan J. Pinto, Mark Kirkpatrick und Justin C. Havird. „Mitonuclear sex determination? Empirical evidence from bivalves“. Molecular Biology and Evolution, 03.11.2023. http://dx.doi.org/10.1093/molbev/msad240.
Der volle Inhalt der QuelleWeigert, Nina, Anna-Lena Schweiger, Jonas Gross, Marie Matthes, Selim Corbacioglu, Gunhild Sommer und Tilman Heise. „Detection of a 7SL RNA-derived small non-coding RNA using Molecular Beacons in vitro and in cells“. Biological Chemistry, 28.08.2023. http://dx.doi.org/10.1515/hsz-2023-0185.
Der volle Inhalt der QuelleHuang, Songqian, Shinya Nishiumi, Md Asaduzzaman, Yida Pan, Guanting Liu, Kazutoshi Yoshitake, Kaoru Maeyama et al. „Exosome-derived small non-coding RNAs reveal immune response upon grafting transplantation in Pinctada fucata (Mollusca)“. Open Biology 12, Nr. 5 (Mai 2022). http://dx.doi.org/10.1098/rsob.210317.
Der volle Inhalt der QuelleDissertationen zum Thema "SncRNA silencing"
Gospodinova, Dimitrova Dilyana. „Functions of tRNA methyltransferases in the small non-coding RNA pathways and intellectual disability“. Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS384.
Der volle Inhalt der Quelle2’-O-methylation (Nm) can affect RNAs in multiple ways and Nm-modifying enzymes are highly conserved and their dysfunctions are often linked to the development of cancers and brain diseases. An excellent example is the human FTSJ1 - a tRNA Nm-methyltransferase (Nm-MTase) that is conserved in yeast and is associated with Intellectual Disability (ID) in humans and mice. During my PhD work, I contributed on extending the evolutionary portfolio of this enzyme by demonstrating the molecular function of its predicted Drosophila homologs (Trm7_32 and Trm7_34) by using the cutting edge RiboMethSeq technique and the more classical MALDI-TOF. I also unraveled novel tRNA and even potential mRNA targets of human FTSJ1 in cell lines derived from ID patients’ blood carrying various mutations in FTSJ1. A small RNAseq analysis revealed a deregulation of the miRNAs population in FTSJ1 loss of function mutant cells, while in flies, our genetic sensors showed dysfunctional piRNA and Ago2-dependent miRNA silencing pathways when lacking the FTSJ1 orthologs. Northern blot analysis detected the accumulation of specific tRNA fragments (tRFs) derived from tRNAPhe (a major target of the enzymes). Today, we are considering the biomarker potential of these tRFs and testing their conservation in the ID patients’ cell lines. Finally, we used RiboMethseq to evaluate any changes in the Nm-profiles of the mRNA population in FTSJ1 mutant context, thus, opening new possibilities for biological significance of this enzyme. The results from these studies provide further insights in the molecular pathways that govern FTSJ1-dependent ID pathogenesis