Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Smoothed particle hydrodynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Smoothed particle hydrodynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Smoothed particle hydrodynamics"
Monaghan, J. J. „Smoothed Particle Hydrodynamics“. Annual Review of Astronomy and Astrophysics 30, Nr. 1 (September 1992): 543–74. http://dx.doi.org/10.1146/annurev.aa.30.090192.002551.
Der volle Inhalt der QuelleMonaghan, J. J. „Smoothed particle hydrodynamics“. Reports on Progress in Physics 68, Nr. 8 (05.07.2005): 1703–59. http://dx.doi.org/10.1088/0034-4885/68/8/r01.
Der volle Inhalt der QuelleRitchie, B. W., und P. A. Thomas. „Multiphase smoothed-particle hydrodynamics“. Monthly Notices of the Royal Astronomical Society 323, Nr. 3 (21.05.2001): 743–56. http://dx.doi.org/10.1046/j.1365-8711.2001.04268.x.
Der volle Inhalt der QuelleCullen, Lee, und Walter Dehnen. „Inviscid smoothed particle hydrodynamics“. Monthly Notices of the Royal Astronomical Society 408, Nr. 2 (30.07.2010): 669–83. http://dx.doi.org/10.1111/j.1365-2966.2010.17158.x.
Der volle Inhalt der QuelleTsuji, P., M. Puso, C. W. Spangler, J. M. Owen, D. Goto und T. Orzechowski. „Embedded smoothed particle hydrodynamics“. Computer Methods in Applied Mechanics and Engineering 366 (Juli 2020): 113003. http://dx.doi.org/10.1016/j.cma.2020.113003.
Der volle Inhalt der QuelleEllero, Marco, Mar Serrano und Pep Español. „Incompressible smoothed particle hydrodynamics“. Journal of Computational Physics 226, Nr. 2 (Oktober 2007): 1731–52. http://dx.doi.org/10.1016/j.jcp.2007.06.019.
Der volle Inhalt der QuellePetschek, A. G., und L. D. Libersky. „Cylindrical Smoothed Particle Hydrodynamics“. Journal of Computational Physics 109, Nr. 1 (November 1993): 76–83. http://dx.doi.org/10.1006/jcph.1993.1200.
Der volle Inhalt der QuelleTavakkol, Sasan, Amir Reza Zarrati und Mahdiyar Khanpour. „Curvilinear smoothed particle hydrodynamics“. International Journal for Numerical Methods in Fluids 83, Nr. 2 (07.06.2016): 115–31. http://dx.doi.org/10.1002/fld.4261.
Der volle Inhalt der QuelleTrimulyono, Andi. „Validasi Gerakan Benda Terapung Menggunakan Metode Smoothed Particle Hydrodynamics“. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 15, Nr. 2 (06.06.2018): 38–43. http://dx.doi.org/10.14710/kpl.v15i2.17802.
Der volle Inhalt der QuelleMurante, G., S. Borgani, R. Brunino und S. H. Cha. „Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics“. Monthly Notices of the Royal Astronomical Society 417, Nr. 1 (13.09.2011): 136–53. http://dx.doi.org/10.1111/j.1365-2966.2011.19021.x.
Der volle Inhalt der QuelleDissertationen zum Thema "Smoothed particle hydrodynamics"
Lin, Feng Ying. „Smoothed particle hydrodynamics“. Mémoire, Université de Sherbrooke, 2005. http://savoirs.usherbrooke.ca/handle/11143/4654.
Der volle Inhalt der QuelleAkinci, Nadir [Verfasser], und Matthias [Akademischer Betreuer] Teschner. „Interface handling in smoothed particle hydrodynamics = Interface-Handhabung in Smoothed Particle Hydrodynamics“. Freiburg : Universität, 2014. http://d-nb.info/1114829331/34.
Der volle Inhalt der QuelleGalagali, Nikhil. „Algorithms for particle remeshing applied to smoothed particle hydrodynamics“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/55074.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 57-59).
This thesis outlines adaptivity schemes for particle-based methods for the simulation of nearly incompressible fluid flows. As with the remeshing schemes used in mesh and grid-based methods, there is a need to use localized refinement in particle methods to reduce computational costs. Various forms of particle refinement have been proposed for particle-based methods such as Smoothed Particle Hydrodynamics (SPH). However, none of the techniques that exist currently are able to retain the original degree of randomness among particles. Existing methods reinitialize particle positions on a regular grid. Using such a method for region localized refinement can lead to discontinuities at the interfaces between refined and unrefined particle domains. In turn, this can produce inaccurate results or solution divergence. This thesis outlines the development of new localized refinement algorithms that are capable of retaining the initial randomness of the particles, thus eliminating transition zone discontinuities. The algorithms were tested through SPH simulations of Couette Flow and Poiseuille Flow with spatially varying particle spacing. The determined velocity profiles agree well with theoretical results. In addition, the algorithms were also tested on a flow past a cylinder problem, but with a complete domain remeshing. The original and the remeshed particle distributions showed similar velocity profiles. The algorithms can be extended to 3-D flows with few changes, and allow the simulation of multi-scale flows at reduced computational costs.
by Nikhil Galagali.
S.M.
Vijaykumar, Adithya. „Smoothed Particle Hydrodynamics Simulation for Continuous Casting“. Thesis, KTH, Matematik (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105554.
Der volle Inhalt der QuelleDen klassiska SPH-modellen för vätskor med fri yta kompletteras med värmeledning med fasomvandling och stelning: partiklar kan byta mellan vätske-tillstånd och solid-tillstånd beroende på temperaturen. Elastiska krafter beroende på avstånd mellan partiklarna aktiveras i solid-tillståndet och slås av i fluid-tillstånd så att vätskan kan stelna och senare smälta igen om så behövs. Vid stränggjutning stelnar smältan, som fylls på via ett rör, vid kontakt med en oscillerande, kall kokill-vägg, till ett elastiskt skal. Detta kyls fortlöpande genom påsprutning av vatten utanpå kokillen och direkt på skalet, som förångas. Skalet deformeras nedanför kokillen av det hydrostatiska trycket från smältan; om det ar för tunt brister det. Som demonstration gjordes en simulering där ett skal skapas, varpå man slår av vattenkylningen på ett parti: då smälter skalet och blir tunnare och till sist brister det och all smälta rinner ut genom hålet. Noggrannheten i simuleringen lämnar en del att önska men det vore mycket svårt att bygga en så komplex modell med vanlig CFD.
McCabe, Christopher. „Smoothed particle hydrodynamics on graphics processing units“. Thesis, Manchester Metropolitan University, 2012. http://e-space.mmu.ac.uk/304852/.
Der volle Inhalt der QuelleIsmail, Ernesto Bram. „Smoothed particle hydrodynamics for nonlinear solid mechanics“. Master's thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/11888.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 115-117).
Smooth Particle Hydrodynamics (SPH) is one of the simplest meshless methods currently in use. The method has seen significant development and has been the germination point for many other meshless methods. The development of new meshless methods regularly uses standard SPH as a starting point, while trying to improve on issues related to consistency and stability. Despite these perceived flaws it is favoured by many researchers because of its simple structure and the ease with which it can be implemented.
Parameswaran, Gopalkrishnan. „Smoothed Particle Hydrodynamics studies of heap leaching hydrodynamics and thermal transport“. Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/39879.
Der volle Inhalt der QuelleStrand, Russell K. „Smoothed particle hydrodynamics modelling for failure in metals“. Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/6773.
Der volle Inhalt der QuelleSpreng, Fabian [Verfasser]. „Smoothed Particle Hydrodynamics for Ductile Solids / Fabian Spreng“. Aachen : Shaker, 2017. http://d-nb.info/1139583565/34.
Der volle Inhalt der QuelleAnathpindika, Sumedh V. „Smoothed particle hydrodynamics simulations of colliding molecular clouds“. Thesis, Cardiff University, 2008. http://orca.cf.ac.uk/54779/.
Der volle Inhalt der QuelleBücher zum Thema "Smoothed particle hydrodynamics"
Dutra Fraga Filho, Carlos Alberto. Smoothed Particle Hydrodynamics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00773-7.
Der volle Inhalt der QuelleB, Liu M., Hrsg. Smoothed particle hydrodynamics: A meshfree particle method. New Jersey: World Scientific, 2003.
Den vollen Inhalt der Quelle findenLee, Hwi. Some Applications of Nonlocal Models to Smoothed Particle Hydrodynamics-like Methods. [New York, N.Y.?]: [publisher not identified], 2021.
Den vollen Inhalt der Quelle findenStellingwerf, Robert Francis. Impact modeling with smooth particle hydrodynamics. Loa Alamos, NM: Los Alamos National Laboratory, 1993.
Den vollen Inhalt der Quelle findenTrease, Harold E., Martin F. Fritts und W. Patrick Crowley, Hrsg. Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54960-9.
Der volle Inhalt der QuelleNext Free-Lagrange Conference (1990 Moran, Wyo.). Advances in the Free-Lagrange method: Including contributions on adaptive gridding and the smooth particle hydrodynamics method : proceedings of the Next Free-Lagrange Conference held at Jackson Lake Lodge, Moran, Wyoming, USA, 3-7 June 1990. Berlin: Springer-Verlag, 1991.
Den vollen Inhalt der Quelle findenLiu, G. R., und M. B. Liu. Smoothed Particle Hydrodynamics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/5340.
Der volle Inhalt der QuelleCarlos Alberto Dutra Fraga Filho. Smoothed Particle Hydrodynamics: Fundamentals and Basic Applications in Continuum Mechanics. Springer, 2018.
Den vollen Inhalt der Quelle findenTrease, Harold E., Martin F. Fritts und W. Patrick Crowley. Advances in the Free-Lagrange Method: Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Springer, 2014.
Den vollen Inhalt der Quelle findenFritts, M. J., H. E. Trease und Free-Lagrange Conference (1990 Moran Wyo ). Next. Advances in the Free-Lagrange Method: Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method : Proceedings of the (Lecture Notes in Physics). Springer, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Smoothed particle hydrodynamics"
Monaghan, J. J. „Smoothed Particle Hydrodynamics“. In Numerical Astrophysics, 357–66. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4780-4_110.
Der volle Inhalt der QuelleWeißenfels, Christian. „Smoothed Particle Hydrodynamics“. In Simulation of Additive Manufacturing using Meshfree Methods, 101–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87337-0_6.
Der volle Inhalt der QuelleDutra Fraga Filho, Carlos Alberto. „Introduction“. In Smoothed Particle Hydrodynamics, 1–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00773-7_1.
Der volle Inhalt der QuelleDutra Fraga Filho, Carlos Alberto. „Physical-Mathematical Modelling“. In Smoothed Particle Hydrodynamics, 11–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00773-7_2.
Der volle Inhalt der QuelleDutra Fraga Filho, Carlos Alberto. „Smoothed Particle Hydrodynamics Method“. In Smoothed Particle Hydrodynamics, 17–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00773-7_3.
Der volle Inhalt der QuelleDutra Fraga Filho, Carlos Alberto. „Applications in Continuum Fluid Mechanics and Transport Phenomena“. In Smoothed Particle Hydrodynamics, 67–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00773-7_4.
Der volle Inhalt der QuelleKlapp, Jaime, Leonardo Di G. Sigalotti, Franklin Peña-Polo und Leonardo Trujillo. „Strong Shocks with Smoothed Particle Hydrodynamics“. In Experimental and Theoretical Advances in Fluid Dynamics, 69–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17958-7_6.
Der volle Inhalt der QuelleMonaghan, Joseph J. „New Developments in Smoothed Particle Hydrodynamics“. In Lecture Notes in Computational Science and Engineering, 281–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56103-0_19.
Der volle Inhalt der QuelleAbadi, Mario G., Diego G. Lambas und Patricia B. Tissera. „Cosmological Simulations with Smoothed Particle Hydrodynamics“. In Examining the Big Bang and Diffuse Background Radiations, 577–78. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0145-2_87.
Der volle Inhalt der QuellePelfrey, Brandon, und Donald House. „Adaptive Neighbor Pairing for Smoothed Particle Hydrodynamics“. In Advances in Visual Computing, 192–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17274-8_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Smoothed particle hydrodynamics"
Raveendran, Karthik, Chris Wojtan und Greg Turk. „Hybrid smoothed particle hydrodynamics“. In the 2011 ACM SIGGRAPH/Eurographics Symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2019406.2019411.
Der volle Inhalt der QuelleBender, Jan, und Dan Koschier. „Divergence-free smoothed particle hydrodynamics“. In SCA '15: The ACM SIGGRAPH / Eurographics Symposium on Computer Animation. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2786784.2786796.
Der volle Inhalt der QuelleHarada, Takahiro, Seiichi Koshizuka und Yoichiro Kawaguchi. „Smoothed particle hydrodynamics in complex shapes“. In the 23rd Spring Conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/2614348.2614375.
Der volle Inhalt der QuelleLuehr, Charles, und Firooz Allahdadi. „Fundamentals of smoothed particle hydrodynamics (SPH)“. In 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-66.
Der volle Inhalt der QuelleDalrymple, Robert A., Benedict Rogers, Muthukumar Narayanaswamy, Shan Zou, Moncho Gesteira, Alejandro J. C. Crespo und Andrea Panizzo. „Smoothed Particle Hydrodynamics for Water Waves“. In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29390.
Der volle Inhalt der QuelleXiaopeng Gao, Zhiqiang Wang, Han Wan und Xiang Long. „Accelerate Smoothed Particle Hydrodynamics using GPU“. In 2010 IEEE Youth Conference on Information, Computing and Telecommunications (YC-ICT). IEEE, 2010. http://dx.doi.org/10.1109/ycict.2010.5713129.
Der volle Inhalt der QuelleGanser, M., B. van der Linden und C. G. Giannopapa. „Modeling Hypervelocity Impacts Using Smoothed Particle Hydrodynamics“. In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84609.
Der volle Inhalt der QuelleWinkler, D., M. Meister, M. Rezavand und W. Rauch. „SPHASE—Smoothed Particle Hydrodynamics in Wastewater Treatment“. In World Environmental and Water Resources Congress 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479889.032.
Der volle Inhalt der QuelleAl-Saad, Mohammed, Sivakumar Kulasegaram und Stephane P. A. Bordas. „BLOOD FLOW SIMULATION USING SMOOTHED PARTICLE HYDRODYNAMICS“. In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2409.10329.
Der volle Inhalt der QuelleZOU, SHAN, und ROBERT A. DALRYMPLE. „SEDIMENT SUSPENSION MODELING BY SMOOTHED PARTICLE HYDRODYNAMICS“. In Proceedings of the 29th International Conference. World Scientific Publishing Company, 2005. http://dx.doi.org/10.1142/9789812701916_0156.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Smoothed particle hydrodynamics"
Swegle, J. W., S. W. Attaway, M. W. Heinstein, F. J. Mello und D. L. Hicks. An analysis of smoothed particle hydrodynamics. Office of Scientific and Technical Information (OSTI), März 1994. http://dx.doi.org/10.2172/10159839.
Der volle Inhalt der QuelleDalrymple, Robert A. Modeling Water Waves with Smoothed Particle Hydrodynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada597658.
Der volle Inhalt der QuelleDalrymple, Robert A. Modeling Water Waves with Smoothed Particle Hydrodynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557148.
Der volle Inhalt der QuelleCloutman, L. D. SPH (smoothed particle hydrodynamics) simulations of hypervelocity impacts. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/6025786.
Der volle Inhalt der QuelleJohnson, Jeffrey N. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics. Office of Scientific and Technical Information (OSTI), Januar 2009. http://dx.doi.org/10.2172/963518.
Der volle Inhalt der QuelleSwegle, J. W., und S. W. Attaway. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/48635.
Der volle Inhalt der QuelleZhu, Minjie, und Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2024. http://dx.doi.org/10.55461/gsfh8371.
Der volle Inhalt der QuellePrescott, Steven, Curtis Smith, Stephen Hess, Linyu Lin und Ram Sampath. Smooth Particle Hydrodynamics-based Wind Representation. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1364522.
Der volle Inhalt der QuelleKnapp, Charles E. An implicit Smooth Particle Hydrodynamic code. Office of Scientific and Technical Information (OSTI), Mai 2000. http://dx.doi.org/10.2172/754046.
Der volle Inhalt der QuelleDalrymple, Robert A. Smooth Particle Hydrodynamics for Surf Zone Waves. Fort Belvoir, VA: Defense Technical Information Center, Januar 2008. http://dx.doi.org/10.21236/ada514686.
Der volle Inhalt der Quelle