Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Smooth numbers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Smooth numbers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Smooth numbers"
Baker, Roger. „Smooth numbers in Beatty sequences“. Acta Arithmetica 200, Nr. 4 (2021): 429–38. http://dx.doi.org/10.4064/aa210322-22-6.
Der volle Inhalt der QuelleLaishram, Shanta, und M. Ram Murty. „Grimm's conjecture and smooth numbers“. Michigan Mathematical Journal 61, Nr. 1 (März 2012): 151–60. http://dx.doi.org/10.1307/mmj/1331222852.
Der volle Inhalt der QuelleOehring, Charles. „Singular numbers of smooth kernels“. Mathematical Proceedings of the Cambridge Philosophical Society 103, Nr. 3 (Mai 1988): 511–14. http://dx.doi.org/10.1017/s0305004100065129.
Der volle Inhalt der QuelleQin, Zhenzhen, und Tianping Zhang. „Kloosterman sums over smooth numbers“. Journal of Number Theory 182 (Januar 2018): 221–35. http://dx.doi.org/10.1016/j.jnt.2017.06.011.
Der volle Inhalt der QuelleCROOT, ERNIE. „SMOOTH NUMBERS IN SHORT INTERVALS“. International Journal of Number Theory 03, Nr. 01 (März 2007): 159–69. http://dx.doi.org/10.1142/s1793042107000833.
Der volle Inhalt der QuelleShparlinski, Igor E. „Character sums with smooth numbers“. Archiv der Mathematik 110, Nr. 5 (05.03.2018): 467–76. http://dx.doi.org/10.1007/s00013-018-1168-y.
Der volle Inhalt der Quellekinsley, Anto A., und J. Joan princiya. „Center Smooth Sets and Center Smooth Numbers of Graphs“. Journal of Physics: Conference Series 1770, Nr. 1 (01.03.2021): 012071. http://dx.doi.org/10.1088/1742-6596/1770/1/012071.
Der volle Inhalt der QuelleHeath-Brown, D. R. „The differences between consecutive smooth numbers“. Acta Arithmetica 184, Nr. 3 (2018): 267–85. http://dx.doi.org/10.4064/aa170913-11-7.
Der volle Inhalt der QuelleShparlinski, Igor E. „Character sums over shifted smooth numbers“. Proceedings of the American Mathematical Society 135, Nr. 09 (02.05.2007): 2699–706. http://dx.doi.org/10.1090/s0002-9939-07-08785-0.
Der volle Inhalt der QuelleOehring, Charles. „Singular numbers of smooth kernels. II“. Mathematical Proceedings of the Cambridge Philosophical Society 105, Nr. 1 (Januar 1989): 165–67. http://dx.doi.org/10.1017/s0305004100001493.
Der volle Inhalt der QuelleDissertationen zum Thema "Smooth numbers"
Moore, Daniel Ross. „An Intrinsic Theory of Smooth Automorphic Representations“. The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524174589105537.
Der volle Inhalt der QuelleMansour-Tehrani, Mehrdad. „Spacial distribution and scaling of bursting events in boundary layer turbulence over smooth and rough surfaces“. Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261297.
Der volle Inhalt der QuelleSymes, Joseph Alexander. „Dry inclined galloping of smooth circular cables in the critical reynolds number range“. Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546204.
Der volle Inhalt der QuelleFahrner, Anne-Kathrin [Verfasser], und Jürgen [Akademischer Betreuer] Hausen. „Smooth Mori dream spaces of small Picard number / Anne-Kathrin Fahrner ; Betreuer: Jürgen Hausen“. Tübingen : Universitätsbibliothek Tübingen, 2017. http://d-nb.info/1196703264/34.
Der volle Inhalt der QuelleZouari, Hichem. „Les entiers friables sous contraintes digitales“. Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0255.
Der volle Inhalt der QuelleThis thesis addresses some questions related to the sum of digits function and friable integers. The first chapter is dedicated to an introduction that gathers the origins of the main topics covered in this thesis, as well as a background and the necessary notations for the rest of the work. The main results obtained during this research will also be presented. The second chapter focuses on the behaviour of the set ({ n leq x : n ext{ is } k ext{-free}, , s_q(Q(n)) equiv a pmod{m} }), where ( a in mathbb{Z} ), ( k ), and ( m ) are natural numbers greater than or equal to 2. The function ( s_q ) represents the sum of digits in base ( q ), ( k )-free integers are those not divisible by the ( k )-th power of a prime number, and ( Q ) is a polynomial of degree greater than or equal to 2. To show our main result, we evaluate exponential sums of the type(sum_{n leq x atop{ n ext{ is } k ext{-free}}} e(alpha s_q(Q(n)))), where ( alpha ) is a real number such that ((q - 1)alpha in mathbb{R} setminus mathbb{Z}). In the end, we establish an equidistribution result modulo 1. The third chapter, we focus on the distribution of the Zeckendorf sum of digits over friable integers in congruence classes. An integer is called ( y )-friable if all its prime factors are less than or equal to ( y ). We use the notation ( P(n) ) to denote the largest prime factor of ( n ), and ( S(x, y) := { n leq x : P(n) leq y } ) to denote the set of ( y )-friable integers less than or equal to ( x ). The main objective of this chapter is to evaluate the set ( { n in S(x, y) : s_varphi(n) equiv a pmod{m} } ), where ( a in mathbb{Z} ) and ( m ) is a natural number greater than or equal to 2. Here, ( s_varphi ) is the sum of digits function in the Fibonacci base. As in the second chapter, to prove the main result, we use exponential sums, and we utilize the property of decomposition of friable integers into intervals for our demonstration to evaluate the exponential sum(sum_{n in S(x, y)} e(vartheta s_varphi(n))), where ( vartheta in mathbb{R} setminus mathbb{Z} ). The fourth chapter deals with the average of sums of certain multiplicative functions over friable integers. In this chapter, our goal is to determine estimates for the following expressions: sigma_s(n) = sum_{d mid n} d^s, varphi(n) = sum_{d mid n} mu(d) n/d, and psi(n) = sum_{d mid n} mu^2(n/d) d, where ( s ) is a non-zero real number, when (n) runs over the set (S(x,y)). The last chapter presents an application of the Turán-Kubilius inequality. It is well known that this inequality deals with additive functions and has also been used to prove the Hardy-Ramanujan theorem for the additive function (omega(n)), which counts the prime divisors of the integer (n). In this chapter, we move into the space of friable integers and focus on the additive function ilde{omega}(n) = sum_{p mid n atop{s_q(p) equiv a pmod{b}}} 1, where ( a in mathbb{Z} ) and ( b geq 2 ) are integers. Firstly, we provide an estimate of ( ilde{omega}(n)) when (n) runs through the set (S(x,y)), we then use the Turán-Kubilius inequality in the space of friable integers established by Tenenbaum and de la Bretèche to present few applications
Reid, W. J. „Experimental investigation of circumferentially non-uniform heat flux on the heat transfer coefficient in a smooth horizontal tube with buoyancy driven secondary flow“. Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/66236.
Der volle Inhalt der QuelleDissertation (MEng)--University of Pretoria, 2018.
Mechanical and Aeronautical Engineering
MEng
Unrestricted
Apsilidis, Nikolaos. „Experimental Investigation of Turbulent Flows at Smooth and Rough Wall-Cylinder Junctions“. Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/71713.
Der volle Inhalt der QuellePh. D.
Bao, Yanyao. „Smoothed Particle Hydrodynamics Simulations for Dynamic Capillary Interactions“. Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19592.
Der volle Inhalt der QuelleHörmann, Wolfgang, und Onur Bayar. „Modelling Probability Distributions from Data and its Influence on Simulation“. Department of Statistics and Mathematics, Abt. f. Angewandte Statistik u. Datenverarbeitung, WU Vienna University of Economics and Business, 2000. http://epub.wu.ac.at/612/1/document.pdf.
Der volle Inhalt der QuelleSeries: Preprint Series / Department of Applied Statistics and Data Processing
Barajas, Leandro G. „Process Control in High-Noise Environments Using A Limited Number Of Measurements“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/7741.
Der volle Inhalt der QuelleBücher zum Thema "Smooth numbers"
Sarpkaya, Turgut. In-line and transverse forces on smooth and rough cylinders in oscillatory flow at high Reynolds numbers. Monterey, Calif: Naval Postgraduate School, 1986.
Den vollen Inhalt der Quelle findenR, Meyer Robert, und Dryden Flight Research Facility, Hrsg. Effects of wing sweep on boundary-layer transition for a smooth F-14A wing at Mach numbers from 0.700 to 0.825. Edwards, Calif: National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility, 1990.
Den vollen Inhalt der Quelle findenSabinin, Lev V. Smooth Quasigroups and Loops. Dordrecht: Springer Netherlands, 1999.
Den vollen Inhalt der Quelle findenPowers, Sheryll Goecke. Flight wing surface pressure and boundary-layer data report from the F-111 smooth variable-camber supercritical mission adaptive wing. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1997.
Den vollen Inhalt der Quelle findenPowers, Sheryll Goecke. Flight wing surface pressure and boundary-layer data report from the F-111 smooth variable-camber supercritical mission adaptive wing. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1997.
Den vollen Inhalt der Quelle findenH, Hathaway David, Reichmann Edwin J und George C. Marshall Space Flight Center., Hrsg. On the correlation between maximum amplitude and smoothed monthly mean sunspot number during the rise of the cycle (from t=0-48 months past sunspot minimum). [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1998.
Den vollen Inhalt der Quelle findenWilson, Robert M. On the correlation between maximum amplitude and smoothed monthly mean sunspot number during the rise of the cycle: From t=0-48 months past sunspot minimum. Linthicum Heights, MD: NASA Center for AeroSpace Information, 1998.
Den vollen Inhalt der Quelle findenH, Hathaway David, Reichmann Edwin J und George C. Marshall Space Flight Center., Hrsg. On the correlation between maximum amplitude and smoothed monthly mean sunspot number during the rise of the cycle (from t=0-48 months past sunspot minimum). [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, Marshall Space Flight Center, 1998.
Den vollen Inhalt der Quelle findenPISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics (2011 Messina, Italy). Fractal geometry and dynamical systems in pure and applied mathematics. Herausgegeben von Carfi David 1971-, Lapidus, Michel L. (Michel Laurent), 1956-, Pearse, Erin P. J., 1975-, Van Frankenhuysen Machiel 1967- und Mandelbrot Benoit B. Providence, Rhode Island: American Mathematical Society, 2013.
Den vollen Inhalt der Quelle findenDlreah, M. Smooth Sailing Blood Pressure Diary: A 52 Week Tracker to Help Keep Heart Rate, Blood Pressure Systolic and Diastolic Numbers. Independently Published, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Smooth numbers"
Shiu, Peter. „Smooth Numbers“. In Springer Undergraduate Mathematics Series, 349–70. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63814-5_13.
Der volle Inhalt der QuelleFelsager, Bjørn. „Smooth Maps—Winding Numbers“. In Geometry, Particles, and Fields, 534–613. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0631-6_10.
Der volle Inhalt der QuelleJevtić, Filip D. „Smooth Numbers in Music and Architecture“. In Zbornik radova / Matematički institut SANU, 69–74. Belgrade: Matematički institut SANU, 2024. http://dx.doi.org/10.18485/mi_sanu_zr.2024.29.21.ch4.
Der volle Inhalt der QuellePomerance, Carl. „The Role of Smooth Numbers in Number Theoretic Algorithms“. In Proceedings of the International Congress of Mathematicians, 411–22. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9078-6_34.
Der volle Inhalt der QuelleAluffi, Paolo. „The characteristic numbers of smooth plane cubics“. In Algebraic Geometry Sundance 1986, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082905.
Der volle Inhalt der QuelleKlocker, Benedikt, Herbert Fleischner und Günther R. Raidl. „Finding Smooth Graphs with Small Independence Numbers“. In Lecture Notes in Computer Science, 527–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72926-8_44.
Der volle Inhalt der QuelleSorenson, Jonathan P. „A Fast Algorithm for Approximately Counting Smooth Numbers“. In Lecture Notes in Computer Science, 539–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10722028_36.
Der volle Inhalt der QuelleParsell, Scott T., und Jonathan P. Sorenson. „Fast Bounds on the Distribution of Smooth Numbers“. In Lecture Notes in Computer Science, 168–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11792086_13.
Der volle Inhalt der QuelleSoundararajan, Kannan. „The distribution of smooth numbers in arithmetic progressions“. In CRM Proceedings and Lecture Notes, 115–28. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/crmp/046/08.
Der volle Inhalt der QuelleGöttsche, Lothar. „Computation of the Betti numbers of Hilbert schemes“. In Hilbert Schemes of Zero-Dimensional Subschemes of Smooth Varieties, 12–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073493.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Smooth numbers"
Huang, Shan, und Neil Kitney. „Model Test on Drag of Cylinders With Helical Grooves at High Reynolds Numbers“. In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20113.
Der volle Inhalt der QuelleMoon, H. K., T. O’Connell und R. Sharma. „Heat Transfer Enhancement Using a Convex-Patterned Surface“. In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30476.
Der volle Inhalt der QuelleEaddy, M., W. H. Melbourne und J. Sheridan. „Surface Roughness Effects on Circular Cylinders at High Reynolds Numbers“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32160.
Der volle Inhalt der QuelleDe Giorgi, Luigi, Volfango Bertola, Emilio Cafaro, Carlo Cima, Mario De Salve und Bruno Panella. „Heat Transfer From Liquid Nitrogen Flows in Smooth Pipes“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22897.
Der volle Inhalt der QuelleAllen, Don W., Dean L. Henning und Li Lee. „Vortex Induced Vibration Tests of Smooth and Rough Flexible Cylinders at High Reynolds Numbers“. In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77176.
Der volle Inhalt der QuelleGao, Haiyang, Hui Hu und Z. J. Wang. „Computational Study of Unsteady Flows around Dragonfly and Smooth Airfoils at Low Reynolds Numbers“. In 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-385.
Der volle Inhalt der QuelleÖzen, Ercan, und Mehmet Niyazi Çankaya. „Estimation Of The Turkish Stock Investor Numbers Based On Kernel Method“. In 27th International Scientific Conference “Competitiveness and Innovation in the Knowledge Economy”. Academy of Economic Studies of Moldova, 2024. http://dx.doi.org/10.53486/cike2023.47.
Der volle Inhalt der QuelleChilds, Dara W., Bassem Kheireddin und Stephen Phillips. „Friction Factor Behavior From Flat-Plate Tests of Smooth and Hole-Pattern Roughened Surfaces With Supply Pressures up to 84 Bars“. In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22227.
Der volle Inhalt der QuelleZadeh, Shobeir Aliasghar, und Rolf Radespiel. „Turbulence Model Investigation of Water Flow in Rough Micro Channels“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78190.
Der volle Inhalt der QuelleKunkel, Gary J., und Ivan Marusic. „Similarity Formulations for Turbulent Boundary Layers at High Reynolds Numbers“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45455.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Smooth numbers"
Sánchez-Páez, David A. Effects of income inequality on COVID-19 infections and deaths during the first wave of the pandemic: Evidence from European countries. Verlag der Österreichischen Akademie der Wissenschaften, August 2021. http://dx.doi.org/10.1553/populationyearbook2022.res1.1.
Der volle Inhalt der QuelleBecker, Chris, Anny Francis, Calebe de Roure und Brendan Wilson. Demand in the Repo Market: Indirect Perspectives from Open Market Operations from 2006 to 2020. Reserve Bank of Australia, Mai 2024. http://dx.doi.org/10.47688/rdp2024-03.
Der volle Inhalt der QuelleZhu, Minjie, und Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2024. http://dx.doi.org/10.55461/gsfh8371.
Der volle Inhalt der QuelleSchuurman, Gregor, Amber Runyon, Brecken Robb, Morris Hylton und Jeneva Wright. Resource stewardship objectives and actions for climate change-sensitive cultural and natural resources in Wrangell-St. Elias National Park and Preserve: Outputs from January?February 2022 climate change adaptation strategy development. National Park Service, 2024. http://dx.doi.org/10.36967/2301930.
Der volle Inhalt der QuelleMonge-González, Ricardo, und Federico Torres-Carballo. The Dynamics of Entrepreneurship in Costa Rica: An Analysis of Firm Entry, Exit, and Growth Rates. Inter-American Development Bank, Januar 2015. http://dx.doi.org/10.18235/0006994.
Der volle Inhalt der QuelleOlsson, Olle. Industrial decarbonization done right: identifying success factors for well-functioning permitting processes. Stockholm Environment Institute, November 2021. http://dx.doi.org/10.51414/sei2021.034.
Der volle Inhalt der QuelleKimhi, Ayal, Barry Goodwin, Ashok Mishra, Avner Ahituv und Yoav Kislev. The dynamics of off-farm employment, farm size, and farm structure. United States Department of Agriculture, September 2006. http://dx.doi.org/10.32747/2006.7695877.bard.
Der volle Inhalt der QuelleIndependent Consultation and Investigation Mechanism: 2013 Annual Report. Inter-American Development Bank, Mai 2014. http://dx.doi.org/10.18235/0005888.
Der volle Inhalt der QuelleFinancial Stability Report - Second Semester of 2020. Banco de la República de Colombia, März 2021. http://dx.doi.org/10.32468/rept-estab-fin.sem2.eng-2020.
Der volle Inhalt der Quelle