Zeitschriftenartikel zum Thema „Smoke and fire detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Smoke and fire detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Dong, Wen-Hui, Xue-Er Sheng, Shu Wang und Tian Deng. „Experimental Study on Particle Size Distribution Characteristics of Aerosol for Fire Detection“. Applied Sciences 13, Nr. 9 (30.04.2023): 5592. http://dx.doi.org/10.3390/app13095592.
Der volle Inhalt der QuelleLu, Xiaoman, Xiaoyang Zhang, Fangjun Li, Mark A. Cochrane und Pubu Ciren. „Detection of Fire Smoke Plumes Based on Aerosol Scattering Using VIIRS Data over Global Fire-Prone Regions“. Remote Sensing 13, Nr. 2 (08.01.2021): 196. http://dx.doi.org/10.3390/rs13020196.
Der volle Inhalt der QuelleLu, Xiaoman, Xiaoyang Zhang, Fangjun Li, Mark A. Cochrane und Pubu Ciren. „Detection of Fire Smoke Plumes Based on Aerosol Scattering Using VIIRS Data over Global Fire-Prone Regions“. Remote Sensing 13, Nr. 2 (08.01.2021): 196. http://dx.doi.org/10.3390/rs13020196.
Der volle Inhalt der QuellePeat, Bob. „Fire detection without smoke“. Physics World 6, Nr. 6 (Juni 1993): 23–25. http://dx.doi.org/10.1088/2058-7058/6/6/18.
Der volle Inhalt der QuelleHuang, Jingwen, Jiashun Zhou, Huizhou Yang, Yunfei Liu und Han Liu. „A Small-Target Forest Fire Smoke Detection Model Based on Deformable Transformer for End-to-End Object Detection“. Forests 14, Nr. 1 (16.01.2023): 162. http://dx.doi.org/10.3390/f14010162.
Der volle Inhalt der QuelleSun, Bingjian, Pengle Cheng und Ying Huang. „Few-Shot Fine-Grained Forest Fire Smoke Recognition Based on Metric Learning“. Sensors 22, Nr. 21 (01.11.2022): 8383. http://dx.doi.org/10.3390/s22218383.
Der volle Inhalt der QuelleBhamra, Jaspreet Kaur, Shreyas Anantha Ramaprasad, Siddhant Baldota, Shane Luna, Eugene Zen, Ravi Ramachandra, Harrison Kim et al. „Multimodal Wildland Fire Smoke Detection“. Remote Sensing 15, Nr. 11 (27.05.2023): 2790. http://dx.doi.org/10.3390/rs15112790.
Der volle Inhalt der QuelleBashambu, Dr Shallu, Anupam Gupta und Sarthak Khandelwal. „Real Time Fire and Smoke Detection System“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 6 (30.06.2023): 2593–600. http://dx.doi.org/10.22214/ijraset.2023.54039.
Der volle Inhalt der QuelleYang, Huanyu, Jun Wang und Jiacun Wang. „Efficient Detection of Forest Fire Smoke in UAV Aerial Imagery Based on an Improved Yolov5 Model and Transfer Learning“. Remote Sensing 15, Nr. 23 (27.11.2023): 5527. http://dx.doi.org/10.3390/rs15235527.
Der volle Inhalt der QuelleZheng, Xin, Feng Chen, Liming Lou, Pengle Cheng und Ying Huang. „Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network“. Remote Sensing 14, Nr. 3 (23.01.2022): 536. http://dx.doi.org/10.3390/rs14030536.
Der volle Inhalt der QuelleQian, Jingjing, Ji Lin, Di Bai, Renjie Xu und Haifeng Lin. „Omni-Dimensional Dynamic Convolution Meets Bottleneck Transformer: A Novel Improved High Accuracy Forest Fire Smoke Detection Model“. Forests 14, Nr. 4 (19.04.2023): 838. http://dx.doi.org/10.3390/f14040838.
Der volle Inhalt der QuellePan, Jin, Xiaoming Ou und Liang Xu. „A Collaborative Region Detection and Grading Framework for Forest Fire Smoke Using Weakly Supervised Fine Segmentation and Lightweight Faster-RCNN“. Forests 12, Nr. 6 (10.06.2021): 768. http://dx.doi.org/10.3390/f12060768.
Der volle Inhalt der Quellerajendra rao shinde, Rajshree, Shruti Sable, Kartik masalkar, Harshad Gaulker, Shailesh nardwar, Tejashri shinde und J. B. fulzale. „HOSPITAL EMERGENCY SECURITY SYSTEM“. International Journal of Engineering Applied Sciences and Technology 7, Nr. 1 (01.05.2022): 264–67. http://dx.doi.org/10.33564/ijeast.2022.v07i01.038.
Der volle Inhalt der QuelleHong, Ter-Ki, und Seul-Hyun Park. „Effects of Optical Properties of Smoke Particles on Fire Detection Characteristics predicted by a Fire Dynamic Simulator Model“. International Journal of Fire Science and Engineering 36, Nr. 4 (31.12.2022): 45–55. http://dx.doi.org/10.7731/kifse.96827602.
Der volle Inhalt der QuelleNgoc, Pham Van Bach, Le Huy Hoang, Le Minh Hieu, Ngoc Hai Nguyen, Nguyen Luong Thien und Van Tuan Doan. „Real-Time Fire and Smoke Detection for Trajectory Planning and Navigation of a Mobile Robot“. Engineering, Technology & Applied Science Research 13, Nr. 5 (13.10.2023): 11843–49. http://dx.doi.org/10.48084/etasr.6252.
Der volle Inhalt der QuelleGonçalves, Leon Augusto Okida, Rafik Ghali und Moulay A. Akhloufi. „YOLO-Based Models for Smoke and Wildfire Detection in Ground and Aerial Images“. Fire 7, Nr. 4 (14.04.2024): 140. http://dx.doi.org/10.3390/fire7040140.
Der volle Inhalt der QuelleTrinath Basu, M., Ragipati Karthik, J. Mahitha und V. Lokesh Reddy. „IoT based forest fire detection system“. International Journal of Engineering & Technology 7, Nr. 2.7 (18.03.2018): 124. http://dx.doi.org/10.14419/ijet.v7i2.7.10277.
Der volle Inhalt der QuelleSawant, Swapnil, Samarth Kumbhar, Bhakti Chauhan, Gaurav Chaudhari und Prachi Thakkar. „Integrated Fire Detection System using ML and IOT“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 4 (30.04.2024): 1738–41. http://dx.doi.org/10.22214/ijraset.2024.60063.
Der volle Inhalt der QuelleSawant, Swapnil. „Integrated Fire Detection System using ML and IOT“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 5 (31.05.2024): 2091–100. http://dx.doi.org/10.22214/ijraset.2024.61810.
Der volle Inhalt der QuelleChetoui, Mohamed, und Moulay A. Akhloufi. „Fire and Smoke Detection Using Fine-Tuned YOLOv8 and YOLOv7 Deep Models“. Fire 7, Nr. 4 (12.04.2024): 135. http://dx.doi.org/10.3390/fire7040135.
Der volle Inhalt der QuelleVinay, Kumar Jain, und Jain Chitrangad. „Fire and smoke detection using YOLOv8“. i-manager's Journal on Artificial Intelligence & Machine Learning 1, Nr. 2 (2023): 22. http://dx.doi.org/10.26634/jaim.1.2.19849.
Der volle Inhalt der QuelleAleshkov, M. V., S. V. Popov, N. G. Topolskiy, A. V. Mokshantsev, K. A. Mikhaylov, D. S. Afanasov, K. N. Samsonov und L. A. Iftodi. „Results of tests for the detection of a fire source using infrared measuring instruments“. Technology of technosphere safety 93 (2021): 19–28. http://dx.doi.org/10.25257/tts.2021.3.93.19-28.
Der volle Inhalt der QuelleYin, Hang, Yurong Wei, Hedan Liu, Shuangyin Liu, Chuanyun Liu und Yacui Gao. „Deep Convolutional Generative Adversarial Network and Convolutional Neural Network for Smoke Detection“. Complexity 2020 (12.11.2020): 1–12. http://dx.doi.org/10.1155/2020/6843869.
Der volle Inhalt der QuelleWu, Xuehui, Xiaobo Lu und Henry Leung. „A Video Based Fire Smoke Detection Using Robust AdaBoost“. Sensors 18, Nr. 11 (05.11.2018): 3780. http://dx.doi.org/10.3390/s18113780.
Der volle Inhalt der QuelleHong, Ter-Ki, und Seul-Hyun Park. „Numerical Analysis of Smoke Behavior and Detection of Solid Combustible Fire Developed in Manned Exploration Module Based on Exploration Gravity“. Fire 4, Nr. 4 (19.11.2021): 85. http://dx.doi.org/10.3390/fire4040085.
Der volle Inhalt der QuelleHossain, F. M. Anim, Youmin M. Zhang und Masuda Akter Tonima. „Forest fire flame and smoke detection from UAV-captured images using fire-specific color features and multi-color space local binary pattern“. Journal of Unmanned Vehicle Systems 8, Nr. 4 (01.12.2020): 285–309. http://dx.doi.org/10.1139/juvs-2020-0009.
Der volle Inhalt der QuelleDing, Yunhong, Mingyang Wang, Yujia Fu und Qian Wang. „Forest Smoke-Fire Net (FSF Net): A Wildfire Smoke Detection Model That Combines MODIS Remote Sensing Images with Regional Dynamic Brightness Temperature Thresholds“. Forests 15, Nr. 5 (10.05.2024): 839. http://dx.doi.org/10.3390/f15050839.
Der volle Inhalt der QuelleSun, Long, Yidan Li und Tongxin Hu. „ForestFireDetector: Expanding Channel Depth for Fine-Grained Feature Learning in Forest Fire Smoke Detection“. Forests 14, Nr. 11 (30.10.2023): 2157. http://dx.doi.org/10.3390/f14112157.
Der volle Inhalt der QuelleSinha, Manya, Shivank Solanki, Sudeep Batra, Dr Yojna Arora und Abhishek Tewatia. „Fire Alarm System Through Smoke Detection“. International Journal of Innovative Research in Computer Science and Technology 11, Nr. 4 (01.07.2023): 01–04. http://dx.doi.org/10.55524/ijircst.2023.11.4.1.
Der volle Inhalt der QuelleKalmykov, Sergey Petrovich, und Viktor Nikolaevich Tokarev. „Influence of room height on estimated fire detection time“. Technology of technosphere safety, Nr. 100 (2023): 100–113. http://dx.doi.org/10.25257/tts.2023.2.100.100-113.
Der volle Inhalt der QuelleZhao, Liang, Jixue Liu, Stefan Peters, Jiuyong Li, Simon Oliver und Norman Mueller. „Investigating the Impact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight CNN Model“. Remote Sensing 14, Nr. 13 (25.06.2022): 3047. http://dx.doi.org/10.3390/rs14133047.
Der volle Inhalt der QuelleChoi, Su-Gil, Yoo-Jeong Choi, Yeong-Jae Nam und Si-Kuk Kim. „Fire Detection Tendency through Combustion Products Generated during UL 268 Wood Flame Fire and Smoldering Fire Test“. Fire Science and Engineering 35, Nr. 1 (28.02.2021): 48–57. http://dx.doi.org/10.7731/kifse.23b37311.
Der volle Inhalt der QuelleHo, Chao-Ching. „Nighttime Fire/Smoke Detection System Based on a Support Vector Machine“. Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/428545.
Der volle Inhalt der QuelleYin, Hang, Mingxuan Chen, Wenting Fan, Yuxuan Jin, Shahbaz Gul Hassan und Shuangyin Liu. „Efficient Smoke Detection Based on YOLO v5s“. Mathematics 10, Nr. 19 (25.09.2022): 3493. http://dx.doi.org/10.3390/math10193493.
Der volle Inhalt der QuelleSun, Baoshan, Kaiyu Bi und Qiuyan Wang. „YOLOv7-FIRE: A tiny-fire identification and detection method applied on UAV“. AIMS Mathematics 9, Nr. 5 (2024): 10775–801. http://dx.doi.org/10.3934/math.2024526.
Der volle Inhalt der QuelleFeng, Xuhong, Pengle Cheng, Feng Chen und Ying Huang. „Full-Scale Fire Smoke Root Detection Based on Connected Particles“. Sensors 22, Nr. 18 (07.09.2022): 6748. http://dx.doi.org/10.3390/s22186748.
Der volle Inhalt der QuelleXiong, Ding, und Lu Yan. „Early smoke detection of forest fires based on SVM image segmentation“. Journal of Forest Science 65, No. 4 (26.04.2019): 150–59. http://dx.doi.org/10.17221/82/2018-jfs.
Der volle Inhalt der QuelleRoh, Joohyung, Yukyung Kim und Minsuk Kong. „Fire Image Classification Based on Convolutional Neural Network for Smart Fire Detection“. International Journal of Fire Science and Engineering 36, Nr. 3 (30.09.2022): 51–61. http://dx.doi.org/10.7731/kifse.cb750817.
Der volle Inhalt der QuelleHan, Ziqi, Ye Tian, Change Zheng und Fengjun Zhao. „Forest Fire Smoke Detection Based on Multiple Color Spaces Deep Feature Fusion“. Forests 15, Nr. 4 (11.04.2024): 689. http://dx.doi.org/10.3390/f15040689.
Der volle Inhalt der QuelleBelure, Prasad, Chirag Bhagat, Om Bhadane, Girija Bendale, Shourya Bhade, Chetan Bhagat und Vaishali Saval. „Low Power Forest Fire Detection“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 5 (31.05.2023): 2498–500. http://dx.doi.org/10.22214/ijraset.2023.51967.
Der volle Inhalt der QuelleWang, Zewei, Change Zheng, Jiyan Yin, Ye Tian und Wenbin Cui. „A Semantic Segmentation Method for Early Forest Fire Smoke Based on Concentration Weighting“. Electronics 10, Nr. 21 (31.10.2021): 2675. http://dx.doi.org/10.3390/electronics10212675.
Der volle Inhalt der QuelleUtkin, Andrei B., Armando Fernandes, Fernando Simões, Alexander Lavrov und Rui Vilar. „Feasibility of forest-fire smoke detection using lidar“. International Journal of Wildland Fire 12, Nr. 2 (2003): 159. http://dx.doi.org/10.1071/wf02048.
Der volle Inhalt der QuelleLi, Tingting, Changchun Zhang, Haowei Zhu und Junguo Zhang. „Adversarial Fusion Network for Forest Fire Smoke Detection“. Forests 13, Nr. 3 (22.02.2022): 366. http://dx.doi.org/10.3390/f13030366.
Der volle Inhalt der QuelleLee, Yeunghak, und Jaechang Shim. „False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning“. Electronics 8, Nr. 10 (15.10.2019): 1167. http://dx.doi.org/10.3390/electronics8101167.
Der volle Inhalt der QuelleMikolai, Imrich, und Ján Tkáč. „Firefighting Systems and Video Smoke Detection as a Significant Part of Fire Safety in the Building“. Advanced Materials Research 1057 (Oktober 2014): 196–203. http://dx.doi.org/10.4028/www.scientific.net/amr.1057.196.
Der volle Inhalt der QuelleDeng, Li, Qian Chen, Yuanhua He, Xiubao Sui und Qin Wang. „Detection of smoke from infrared image frames in the aircraft cargoes“. International Journal of Distributed Sensor Networks 17, Nr. 4 (April 2021): 155014772110098. http://dx.doi.org/10.1177/15501477211009808.
Der volle Inhalt der QuelleChen, Xin, Yipeng Xue, Qingshan Hou, Yan Fu und Yaolin Zhu. „RepVGG-YOLOv7: A Modified YOLOv7 for Fire Smoke Detection“. Fire 6, Nr. 10 (07.10.2023): 383. http://dx.doi.org/10.3390/fire6100383.
Der volle Inhalt der QuelleWang, Aoran, Guanghao Liang, Xuan Wang und Yongchao Song. „Application of the YOLOv6 Combining CBAM and CIoU in Forest Fire and Smoke Detection“. Forests 14, Nr. 11 (17.11.2023): 2261. http://dx.doi.org/10.3390/f14112261.
Der volle Inhalt der QuelleHamzah, Shipun Anuar, Mohd Noh Dalimin, Mohamad Md Som, Mohd Shamian Zainal, Khairun Nidzam Ramli, Wahyu Mulyo Utomo und Nor Azizi Yusoff. „High accuracy sensor nodes for a peat swamp forest fire detection using ESP32 camera“. International Journal of Informatics and Communication Technology (IJ-ICT) 11, Nr. 3 (01.12.2022): 229. http://dx.doi.org/10.11591/ijict.v11i3.pp229-239.
Der volle Inhalt der QuelleBi, Zhen Bo, und Hua Yang. „Fire Image Detection System Based on Cloud Workflow“. Applied Mechanics and Materials 678 (Oktober 2014): 174–79. http://dx.doi.org/10.4028/www.scientific.net/amm.678.174.
Der volle Inhalt der Quelle