Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Smoke and fire detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Smoke and fire detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Smoke and fire detection"
Dong, Wen-Hui, Xue-Er Sheng, Shu Wang und Tian Deng. „Experimental Study on Particle Size Distribution Characteristics of Aerosol for Fire Detection“. Applied Sciences 13, Nr. 9 (30.04.2023): 5592. http://dx.doi.org/10.3390/app13095592.
Der volle Inhalt der QuelleLu, Xiaoman, Xiaoyang Zhang, Fangjun Li, Mark A. Cochrane und Pubu Ciren. „Detection of Fire Smoke Plumes Based on Aerosol Scattering Using VIIRS Data over Global Fire-Prone Regions“. Remote Sensing 13, Nr. 2 (08.01.2021): 196. http://dx.doi.org/10.3390/rs13020196.
Der volle Inhalt der QuelleLu, Xiaoman, Xiaoyang Zhang, Fangjun Li, Mark A. Cochrane und Pubu Ciren. „Detection of Fire Smoke Plumes Based on Aerosol Scattering Using VIIRS Data over Global Fire-Prone Regions“. Remote Sensing 13, Nr. 2 (08.01.2021): 196. http://dx.doi.org/10.3390/rs13020196.
Der volle Inhalt der QuellePeat, Bob. „Fire detection without smoke“. Physics World 6, Nr. 6 (Juni 1993): 23–25. http://dx.doi.org/10.1088/2058-7058/6/6/18.
Der volle Inhalt der QuelleHuang, Jingwen, Jiashun Zhou, Huizhou Yang, Yunfei Liu und Han Liu. „A Small-Target Forest Fire Smoke Detection Model Based on Deformable Transformer for End-to-End Object Detection“. Forests 14, Nr. 1 (16.01.2023): 162. http://dx.doi.org/10.3390/f14010162.
Der volle Inhalt der QuelleSun, Bingjian, Pengle Cheng und Ying Huang. „Few-Shot Fine-Grained Forest Fire Smoke Recognition Based on Metric Learning“. Sensors 22, Nr. 21 (01.11.2022): 8383. http://dx.doi.org/10.3390/s22218383.
Der volle Inhalt der QuelleBhamra, Jaspreet Kaur, Shreyas Anantha Ramaprasad, Siddhant Baldota, Shane Luna, Eugene Zen, Ravi Ramachandra, Harrison Kim et al. „Multimodal Wildland Fire Smoke Detection“. Remote Sensing 15, Nr. 11 (27.05.2023): 2790. http://dx.doi.org/10.3390/rs15112790.
Der volle Inhalt der QuelleBashambu, Dr Shallu, Anupam Gupta und Sarthak Khandelwal. „Real Time Fire and Smoke Detection System“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 6 (30.06.2023): 2593–600. http://dx.doi.org/10.22214/ijraset.2023.54039.
Der volle Inhalt der QuelleYang, Huanyu, Jun Wang und Jiacun Wang. „Efficient Detection of Forest Fire Smoke in UAV Aerial Imagery Based on an Improved Yolov5 Model and Transfer Learning“. Remote Sensing 15, Nr. 23 (27.11.2023): 5527. http://dx.doi.org/10.3390/rs15235527.
Der volle Inhalt der QuelleZheng, Xin, Feng Chen, Liming Lou, Pengle Cheng und Ying Huang. „Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network“. Remote Sensing 14, Nr. 3 (23.01.2022): 536. http://dx.doi.org/10.3390/rs14030536.
Der volle Inhalt der QuelleDissertationen zum Thema "Smoke and fire detection"
Lynch, James Andrew. „A study of smoke aging examining changes in smoke particulate size“. Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0510104-194400/.
Der volle Inhalt der QuelleSaunders, Julie Ann. „The Prediction of Smoke Detector Activation Times in a Two-Storey House Fire through CFD Modelling“. Thesis, University of Canterbury. Civil and Natural Resources Engineering, 2010. http://hdl.handle.net/10092/4077.
Der volle Inhalt der QuelleAlamgir, Nyma. „Computer vision based smoke and fire detection for outdoor environments“. Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/201654/1/Nyma_Alamgir_Thesis.pdf.
Der volle Inhalt der QuelleDawod, Jakob. „Seek : More than just a smoke detector“. Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-105986.
Der volle Inhalt der QuelleAlsaadi, Abdulrahman. „Smart smoke and fire detection with wireless and global system for mobile technology“. Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=1606705.
Der volle Inhalt der QuelleFire safety is one of the major concerns for a safe home environment. Current implementations of home or workplace environment monitoring systems consist of rudimentary smoke detectors devoid of any communication capabilities. Recent trends in the industry have shown a growth in the use of smart devices at homes and with the recent advances in areas of machine learning and data sciences, this trend is expected to evolve at a rate faster than ever before. These smart devices constantly monitor the data of their environment and make decisions by performing data analytics on those observations. Amazon Echo is one such example where an ‘always-listening’ device responds intelligently to a speaker’s command giving its users a Smart Home experience.
In this implementation, we harness the developments in aforementioned areas to make Smart Fire Alarm System. The Smart Fire Alarm constantly monitors the environment and not only alerts the facility where it is located, but it also communicates with the fire department and the guardian of the property through Global System for Mobile (GSM) Communication making the damage control procedures efficient and faster. An ARM7 processor (LPDC 2148), ZigBee IEEE 802.15.4 protocol, and GSM subsystems are used in this implementation to communicate between the base station and smoke detectors.
Garges, David Casimir. „Early Forest Fire Detection via Principal Component Analysis of Spectral and Temporal Smoke Signature“. DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1456.
Der volle Inhalt der QuelleKohler, Daniel G. „STUDY OF STATISTICAL AND COMPUTATIONAL INTELLIGENCE METHODS OF DETECTING TEMPORAL SIGNATURE OF FOREST FIRE HEAT PLUME FROM SINGLE-BAND GROUND-BASED INFRARED VIDEO“. DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/796.
Der volle Inhalt der QuellePhelan, Patrick. „Investigation of enhanced soot deposition on smoke alarm horns“. Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-01075-121834/.
Der volle Inhalt der QuelleĎuriš, Denis. „Detekce ohně a kouře z obrazového signálu“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412968.
Der volle Inhalt der QuelleSchneider, Dirk. „Untersuchung von Methoden zur Früherkennung von Bränden in Wald- und Vegetationsgebieten“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-227018.
Der volle Inhalt der QuelleBücher zum Thema "Smoke and fire detection"
Bukowski, Richard. International fire detection literature review & technical analysis. Quincy, Mass: National Fire Protection Research Foundation, 1991.
Den vollen Inhalt der Quelle findenSmoke without fire. New York: Doubleday, 1989.
Den vollen Inhalt der Quelle findenSmoke without fire. Thorndike, Me: Thorndike Press, 1991.
Den vollen Inhalt der Quelle findenOlson, Karen E. Secondhand smoke. New York: Mysterious Press, 2006.
Den vollen Inhalt der Quelle findenOlson, Karen E. Secondhand Smoke. New York: Grand Central Publishing, 2006.
Den vollen Inhalt der Quelle findenNational Institute of Standards and Technology (U.S.), Hrsg. The zone fire model JET: A model for the prediction of detector activation and gas temperature in the presence of a smoke layer. Gaithersburg, Md: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Den vollen Inhalt der Quelle findenD, Davis William, und United States. National Aeronautics and Space Administration., Hrsg. The use of computer models to predict temperature and smoke movement in high bay spaces. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1993.
Den vollen Inhalt der Quelle findenBennett, Roger P. Fire detection. New York: Nova Science Publishers, 2011.
Den vollen Inhalt der Quelle findenBennett, Roger P., und Roger P. Bennett. Fire detection. New York: Nova Science Publishers, 2011.
Den vollen Inhalt der Quelle findenSmoke without fire. London: Collins, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Smoke and fire detection"
Lien, Kai-Yu, Jung-Chun Liu, Yu-Wei Chan und Chao-Tung Yang. „Fire and Smoke Detection Using YOLO Through Kafka“. In Frontier Computing on Industrial Applications Volume 4, 269–75. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9342-0_29.
Der volle Inhalt der QuelleRobert Singh, A., Suganya Athisayamani, S. Sankara Narayanan und S. Dhanasekaran. „Fire Detection by Parallel Classification of Fire and Smoke Using Convolutional Neural Network“. In Computational Vision and Bio-Inspired Computing, 95–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6862-0_8.
Der volle Inhalt der QuelleMubeen, Muhammad, Muhammad Asad Arshed und Hafiz Abdul Rehman. „DeepFireNet - A Light-Weight Neural Network for Fire-Smoke Detection“. In Communications in Computer and Information Science, 171–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10525-8_14.
Der volle Inhalt der QuelleFavorskaya, Margarita N., und Lakhmi C. Jain. „Deep Learning for Fire and Smoke Detection in Outdoor Spaces“. In Smart Modelling for Engineering Systems, 195–209. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4619-2_15.
Der volle Inhalt der QuelleHajji, Tarik, Ibtissam El Hassani, Abdelkader Fassi Fihri, Yassine Talhaoui und Chaimae Belmarouf. „Fire and Smoke Detection Model for Real-Time CCTV Applications“. In Artificial Intelligence and Industrial Applications, 211–20. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43520-1_18.
Der volle Inhalt der QuelleGuo, Xingran, Haizheng Yu und Xueying Liao. „WCA-VFnet: A Dedicated Complex Forest Smoke Fire Detector“. In Neural Information Processing, 497–508. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8073-4_38.
Der volle Inhalt der QuelleZhang, Qixing, Jia Liu, Jie Luo, Feng Wang, Jinjun Wang und Yongming Zhang. „Characterization of Typical Fire and Non-fire Aerosols by Polarized Light Scattering for Reliable Optical Smoke Detection“. In The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology, 791–801. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9139-3_58.
Der volle Inhalt der QuelleKo, Yoon, Oluwamuyiwa Okunrounmu, Monireh Aram und Dahai Qi. „Fire Risks of Renewable Energy Technologies in Buildings: Analysis of Fire Effluents for Smoke and Toxicant Detection“. In Proceedings of the 5th International Conference on Building Energy and Environment, 1593–98. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9822-5_164.
Der volle Inhalt der QuelleZhou, Zhong, und Ya-qin Zhao. „A New Smoke Detection Method of Forest Fire Video with Color and Flutter“. In Proceedings of the 2015 Chinese Intelligent Automation Conference, 151–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46469-4_16.
Der volle Inhalt der QuelleSaponara, Sergio, Abdussalam Elhanashi und Alessio Gagliardi. „Enabling YOLOv2 Models to Monitor Fire and Smoke Detection Remotely in Smart Infrastructures“. In Lecture Notes in Electrical Engineering, 30–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66729-0_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Smoke and fire detection"
Shuhai, Wang, Chen Shuxin, Chen shuwang und An shengbiao. „Experimental Research on Fire Smoke for Fire Automatic Detection“. In 2007 8th International Conference on Electronic Measurement and Instruments. IEEE, 2007. http://dx.doi.org/10.1109/icemi.2007.4351122.
Der volle Inhalt der QuelleZhaa, Xuan, Hang Ji, Dengyin Zhang und Huanhuan Bao. „Fire Smoke Detection Based on Contextual Object Detection“. In 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). IEEE, 2018. http://dx.doi.org/10.1109/icivc.2018.8492823.
Der volle Inhalt der QuelleZhou, You, Jiaxuan Wang, Tiancheng Han und Xuerui Cai. „Fire Smoke Detection Based on Vision Transformer“. In 2022 4th International Conference on Natural Language Processing (ICNLP). IEEE, 2022. http://dx.doi.org/10.1109/icnlp55136.2022.00015.
Der volle Inhalt der QuelleWei, Yuan, Yu Chunyu und Zhang Yongming. „Based on wavelet transformation fire smoke detection method“. In Instruments (ICEMI). IEEE, 2009. http://dx.doi.org/10.1109/icemi.2009.5274409.
Der volle Inhalt der QuelleChao-Ching Ho und Tzu-Hsin Kuo. „Real-time video-based fire smoke detection system“. In 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2009. http://dx.doi.org/10.1109/aim.2009.5229791.
Der volle Inhalt der QuelleXu, Meng, Xiuping Jia, Mark Pickering und Dar Roberts. „Spectral unmixing for fire smoke detection and removal“. In IGARSS 2016 - 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016. http://dx.doi.org/10.1109/igarss.2016.7729203.
Der volle Inhalt der QuelleGrigorov, Ivan, Atanaska Deleva, Dimitar Stoyanov, Nikolay Kolev und Georgi Kolarov. „LIDAR detection of forest fire smoke above Sofia“. In Eighteenth International School on Quantum Electronics: Laser Physics and Applications, herausgegeben von Tanja Dreischuh, Sanka Gateva und Alexandros Serafetinides. SPIE, 2015. http://dx.doi.org/10.1117/12.2178791.
Der volle Inhalt der QuelleChoueiri, Samia, Daoud Daoud, Samir Harb und Roger Achkar. „Fire and Smoke Detection Using Artificial Neural Networks“. In 2020 14th International Conference on Open Source Systems and Technologies (ICOSST). IEEE, 2020. http://dx.doi.org/10.1109/icosst51357.2020.9332990.
Der volle Inhalt der QuelleJobert, Gabriel, Maryse Fournier, Pierre Barritault, Salim Boutami, Jeremie Auger, Adrien Maillard, Julien Michelot, Pierre Lienhard, Sergio Nicoletti und Laurent Duraffourg. „A Miniaturized Optical Sensor for Fire Smoke Detection“. In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808611.
Der volle Inhalt der QuelleTao, MingKun, Yang Li, ShaoPeng Li, Hao Zhuang und Ling Li. „Early fire smoke detection model based on YOLOv5“. In International Conference on Cloud Computing, Internet of Things, and Computer Applications, herausgegeben von Warwick Powell und Amr Tolba. SPIE, 2022. http://dx.doi.org/10.1117/12.2642639.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Smoke and fire detection"
Josephson, Alexander, und Jenna McDanold. Fire and Smoke. Office of Scientific and Technical Information (OSTI), März 2024. http://dx.doi.org/10.2172/2332767.
Der volle Inhalt der QuelleDoo, Johnny. Unsettled Issues Concerning eVTOL for Rapid-response, On-demand Firefighting. SAE International, August 2021. http://dx.doi.org/10.4271/epr2021017.
Der volle Inhalt der QuelleMcKinnon, Mark, Sean DeCrane und Steve Kerber. Four Firefighters Injured in Lithium-Ion Battery Energy Storage System Explosion -- Arizona. UL Firefighter Safety Research Institute, Juli 2020. http://dx.doi.org/10.54206/102376/tehs4612.
Der volle Inhalt der QuelleAverill, Jason D., Erik L. Johnsson, Marc R. Nyden, Richard D. Peacock und Richard G. Gann. Smoke component yields from room-scale fire tests. Gaithersburg, MD: National Bureau of Standards, 2003. http://dx.doi.org/10.6028/nist.tn.1453.
Der volle Inhalt der QuelleFloyd, Jason E., Sean P. Hunt, Frederick W. Williams und Patricia A. Tatem. Fire and Smoke Simulator (FSSIM) Version 1 - Theory Manual. Fort Belvoir, VA: Defense Technical Information Center, März 2004. http://dx.doi.org/10.21236/ada422214.
Der volle Inhalt der QuelleFloyd, Jason E., Sean P. Hunt, Patricia A. Tatem und Frederick W. Williams. Fire and Smoke Simulator (FSSIM) Version 1 - User's Guide. Fort Belvoir, VA: Defense Technical Information Center, Juli 2004. http://dx.doi.org/10.21236/ada425816.
Der volle Inhalt der QuelleAverill, Jason D., Richard G. Gann und Daniel C. Murphy. Performance of new and aged residential fire smoke alarms. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.tn.1691.
Der volle Inhalt der QuelleMarsh, Nathan D., und Richard G. Gann. Smoke component yields from Bench-Scale Fire Tests : 4. Comparison with Room Fire Results. National Institute of Standards and Technology, Dezember 2013. http://dx.doi.org/10.6028/nist.tn.1763.
Der volle Inhalt der QuelleJason, Nora H. Spacecraft fire detection and extinguishment :. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.88-3712.
Der volle Inhalt der QuelleJones, Walter W. Refinement of a model for fire growth and smoke transport. Gaithersburg, MD: National Bureau of Standards, 1990. http://dx.doi.org/10.6028/nist.tn.1282.
Der volle Inhalt der Quelle