Zeitschriftenartikel zum Thema „Small Heat Schok Protein“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Small Heat Schok Protein.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Small Heat Schok Protein" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Friedrich, Kenneth L., Kim C. Giese, Nicole R. Buan und Elizabeth Vierling. „Interactions between Small Heat Shock Protein Subunits and Substrate in Small Heat Shock Protein-Substrate Complexes“. Journal of Biological Chemistry 279, Nr. 2 (22.10.2003): 1080–89. http://dx.doi.org/10.1074/jbc.m311104200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lee, Garrett J., und Elizabeth Vierling. „A Small Heat Shock Protein Cooperates with Heat Shock Protein 70 Systems to Reactivate a Heat-Denatured Protein“. Plant Physiology 122, Nr. 1 (01.01.2000): 189–98. http://dx.doi.org/10.1104/pp.122.1.189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lindner, Robyn A., John A. Carver, Monika Ehrnsperger, Johannes Buchner, Gennaro Esposito, Joachim Behlke, Gudrun Lutsch, Alexey Kotlyarov und Matthias Gaestel. „Mouse Hsp25, a small heat shock protein“. European Journal of Biochemistry 267, Nr. 7 (April 2000): 1923–32. http://dx.doi.org/10.1046/j.1432-1327.2000.01188.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vos, Michel J., Marianne P. Zijlstra, Serena Carra, Ody C. M. Sibon und Harm H. Kampinga. „Small heat shock proteins, protein degradation and protein aggregation diseases“. Autophagy 7, Nr. 1 (Januar 2011): 101–3. http://dx.doi.org/10.4161/auto.7.1.13935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Laskowska, Ewa, Ewelina Matuszewska und Dorota Kuczynska-Wisnik. „Small Heat Shock Proteins and Protein-Misfolding Diseases“. Current Pharmaceutical Biotechnology 11, Nr. 2 (01.02.2010): 146–57. http://dx.doi.org/10.2174/138920110790909669.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fujita, Eri. „Protein Homeostasis-Small Heat Shock Proteins and Cytoskeleton“. Biological Sciences in Space 22, Nr. 4 (2008): 148–57. http://dx.doi.org/10.2187/bss.22.148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kim, Kyeong Kyu, Rosalind Kim und Sung-Hou Kim. „Crystal structure of a small heat-shock protein“. Nature 394, Nr. 6693 (August 1998): 595–99. http://dx.doi.org/10.1038/29106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shi, Xiaodong, Zhao Wang, Linxuan Yan, Anastasia N. Ezemaduka, Guizhen Fan, Rui Wang, Xinmiao Fu, Changcheng Yin und Zengyi Chang. „Small heat shock protein AgsA forms dynamic fibrils“. FEBS Letters 585, Nr. 21 (12.10.2011): 3396–402. http://dx.doi.org/10.1016/j.febslet.2011.09.042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lelj-Garolla, Barbara, und A. Grant Mauk. „Self-association of a Small Heat Shock Protein“. Journal of Molecular Biology 345, Nr. 3 (Januar 2005): 631–42. http://dx.doi.org/10.1016/j.jmb.2004.10.056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xi, Jing-hua, Fang Bai, Julia Gross, R. Reid Townsend, A. Sue Menko und Usha P. Andley. „Mechanism of Small Heat Shock Protein Functionin Vivo“. Journal of Biological Chemistry 283, Nr. 9 (05.12.2007): 5801–14. http://dx.doi.org/10.1074/jbc.m708704200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tripathi, Shreya, und Sangeeta Sinha. „Small Heat Shock Protein and Drosophila melanogaster Development“. Advances in Zoology and Botany 11, Nr. 4 (August 2023): 246–56. http://dx.doi.org/10.13189/azb.2023.110402.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mandal, Krishnagopal, James Dillon und Elizabeth R. Gaillard. „Heat and Concentration Effects on the Small Heat Shock Protein, α-Crystallin“. Photochemistry and Photobiology 71, Nr. 4 (01.05.2007): 470–75. http://dx.doi.org/10.1562/0031-8655(2000)0710470haceot2.0.co2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Mandal, Krishnagopal, James Dillon und Elizabeth R. Gaillard. „Heat and Concentration Effects on the Small Heat Shock Protein, α-Crystallin“. Photochemistry and Photobiology 71, Nr. 4 (2000): 470. http://dx.doi.org/10.1562/0031-8655(2000)071<0470:haceot>2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Muranova, Lydia K., Vladislav M. Shatov, Olesya V. Bukach und Nikolai B. Gusev. „Cardio-Vascular Heat Shock Protein (cvHsp, HspB7), an Unusual Representative of Small Heat Shock Protein Family“. Biochemistry (Moscow) 86, S1 (Januar 2021): S1—S11. http://dx.doi.org/10.1134/s0006297921140017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Carroll, C., A. Encarnacion, M. Khan, A. Fisher und K. Rodriguez. „ELUCIDATING THE ROLE OF SMALL HEAT SHOCK PROTEIN 25 IN PROTEIN AGGREGATION“. Innovation in Aging 2, suppl_1 (01.11.2018): 99. http://dx.doi.org/10.1093/geroni/igy023.372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Brophy, Colleen M., Shannon Lamb und Audrey Graham. „The small heat shock-related protein–20 is an actin-associated protein“. Journal of Vascular Surgery 29, Nr. 2 (Februar 1999): 326–33. http://dx.doi.org/10.1016/s0741-5214(99)70385-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Poulain, Pierre, Jean-Christophe Gelly und Delphine Flatters. „Detection and Architecture of Small Heat Shock Protein Monomers“. PLoS ONE 5, Nr. 4 (07.04.2010): e9990. http://dx.doi.org/10.1371/journal.pone.0009990.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Martin, Tamara P., Susan Currie und George S. Baillie. „The cardioprotective role of small heat-shock protein 20“. Biochemical Society Transactions 42, Nr. 2 (20.03.2014): 270–73. http://dx.doi.org/10.1042/bst20130272.

Der volle Inhalt der Quelle
Annotation:
The small HSP (heat-shock protein) HSP20 is a molecular chaperone that is transiently up-regulated in response to cellular stress/damage. Although ubiquitously expressed in various tissues, it is most highly expressed in skeletal, cardiac and smooth muscle. Phosphorylation at Ser16 by PKA (cAMP-dependent protein kinase) is essential for HSP20 to confer its protective qualities. HSP20 and its phosphorylation have been implicated in a variety of pathophysiological processes, but most prominently cardiovascular disease. A wealth of knowledge of the importance of HSP20 in contractile function and cardioprotection has been gained over the last decade. The present mini-review highlights more recent findings illustrating the cardioprotective properties of HSP20 and its potential as a therapeutic agent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kantorow, M., und J. Piatigorsky. „Alpha-crystallin/small heat shock protein has autokinase activity.“ Proceedings of the National Academy of Sciences 91, Nr. 8 (12.04.1994): 3112–16. http://dx.doi.org/10.1073/pnas.91.8.3112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Kim, Rosalind, Kyeong Kyu Kim, Hisao Yokota und Sung-Hou Kim. „Small heat shock protein of Methanococcus jannaschii, a hyperthermophile“. Proceedings of the National Academy of Sciences 95, Nr. 16 (04.08.1998): 9129–33. http://dx.doi.org/10.1073/pnas.95.16.9129.

Der volle Inhalt der Quelle
Annotation:
Small heat shock proteins (sHSPs) belong to a family of 12- to 43-kDa proteins that are ubiquitous and are conserved in amino acid sequence among all organisms. A sHSP homologue of Methanococcus jannaschii, a hyperthermophilic Archaeon, forms a homogeneous multimer comprised of 24 monomers with a molecular mass of 400 kDa in contrast to other sHSPs that show heterogeneous oligomeric complexes. Electron microscopy analysis revealed a spherically shaped oligomeric structure ≈15–20 nm in diameter. The protein confers thermal protection of other proteins in vitro as found in other sHSPs. Escherichia coli cell extracts containing the protein were protected from heat-denatured precipitation when heated up to 100°C, whereas extracts from cells not expressing the protein were heat-sensitive at 60°C. Similar results were obtained when purified sHSP protein was added to an E. coli cell lysate. The protein also prevented the aggregation of two purified proteins: single-chain monellin (SCM) at 80°C and citrate synthase at 40°C.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bepperling, A., F. Alte, T. Kriehuber, N. Braun, S. Weinkauf, M. Groll, M. Haslbeck und J. Buchner. „Alternative bacterial two-component small heat shock protein systems“. Proceedings of the National Academy of Sciences 109, Nr. 50 (26.11.2012): 20407–12. http://dx.doi.org/10.1073/pnas.1209565109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Tarumi, K., A. Yagihashi, T. Tsuruma, T. Sakawaki, K. S. Sasaki und K. Hirata. „Heat shock protein improves cold preserved small bowel grafts“. Transplantation Proceedings 30, Nr. 7 (November 1998): 3455–58. http://dx.doi.org/10.1016/s0041-1345(98)01098-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Klemenz, R., E. Frohli, R. H. Steiger, R. Schafer und A. Aoyama. „Alpha B-crystallin is a small heat shock protein.“ Proceedings of the National Academy of Sciences 88, Nr. 9 (01.05.1991): 3652–56. http://dx.doi.org/10.1073/pnas.88.9.3652.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Seit-Nebi, Alim S., und Nikolai B. Gusev. „Versatility of the small heat shock protein HSPB6 (Hsp20)“. Cell Stress and Chaperones 15, Nr. 3 (24.09.2009): 233–36. http://dx.doi.org/10.1007/s12192-009-0141-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Morrow, Geneviève, und Robert M. Tanguay. „Small heat shock protein expression and functions during development“. International Journal of Biochemistry & Cell Biology 44, Nr. 10 (Oktober 2012): 1613–21. http://dx.doi.org/10.1016/j.biocel.2012.03.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Seo, Young Ho. „Small Molecule Inhibitors to Disrupt Protein-protein Interactions of Heat Shock Protein 90 Chaperone Machinery“. Journal of Cancer Prevention 20, Nr. 1 (30.03.2015): 5–11. http://dx.doi.org/10.15430/jcp.2015.20.1.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Waters, E. R. „The molecular evolution of the small heat-shock proteins in plants.“ Genetics 141, Nr. 2 (01.10.1995): 785–95. http://dx.doi.org/10.1093/genetics/141.2.785.

Der volle Inhalt der Quelle
Annotation:
Abstract The small heat-shock proteins have undergone a tremendous diversification in plants; whereas only a single small heat-shock protein is found in fungi and many animals, over 20 different small heat-shock proteins are found in higher plants. The small heat-shock proteins in plants have diversified in both sequence and cellular localization and are encoded by at least five gene families. In the study, 44 small heat-shock protein DNA and amino acid sequences were examined, using both phylogenetic analysis and analysis of nucleotide substitution patterns to elucidate the evolutionary history of the small heat-shock proteins. The phylogenetic relationships of the small heat-shock proteins, estimated using parsimony and distance methods, reveal the gene duplication, sequence divergence and gene conversion have all played a role in the evolution of the small heat-shock proteins. Analysis of nonsynonymous substitutions and conservative and radical replacement substitutions )in relation to hydrophobicity) indicates that the small heat-shock protein gene families are evolving at different rates. This suggests that the small heat-shock proteins may have diversified in function as well as in sequence and cellular localization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Shemetov, Anton A., Alim S. Seit-Nebi und Nikolai B. Gusev. „Phosphorylation of human small heat shock protein HspB8 (Hsp22) by ERK1 protein kinase“. Molecular and Cellular Biochemistry 355, Nr. 1-2 (28.04.2011): 47–55. http://dx.doi.org/10.1007/s11010-011-0837-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Härndahl, Ulrika, Ellen Tufvesson und Cecilia Sundby. „The Chloroplast Small Heat Shock Protein—Purification and Characterization of Pea Recombinant Protein“. Protein Expression and Purification 14, Nr. 1 (Oktober 1998): 87–96. http://dx.doi.org/10.1006/prep.1998.0921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kourtis, Nikos, und Nektarios Tavernarakis. „Small heat shock proteins and neurodegeneration: recent developments“. Biomolecular Concepts 9, Nr. 1 (20.08.2018): 94–102. http://dx.doi.org/10.1515/bmc-2018-0009.

Der volle Inhalt der Quelle
Annotation:
AbstractMembers of the small heat shock protein (sHSP) family are molecular chaperones with a critical role in the maintenance of cellular homeostasis under unfavorable conditions. The chaperone properties of sHSPs prevent protein aggregation, and sHSP deregulation underlies the pathology of several diseases, including neurodegenerative disorders. Recent evidence suggests that the clientele of sHSPs is broad, and the mechanisms of sHSP-mediated neuroprotection diverse. Nonetheless, the crosstalk of sHSPs with the neurodegeneration-promoting signaling pathways remains poorly understood. Here, we survey recent findings on the role and regulation of sHSPs in neurodegenerative diseases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Tada, S. F. S., F. Javier Medrano, B. Gomes Guimarães, C. L. Pintode Oliveira, Í. Torriani und A. Pereirade Souza. „Structural characterization of a small heat-shock protein fromXylella fastidiosa“. Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23.08.2005): c139. http://dx.doi.org/10.1107/s0108767305094080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Gruvberger-Saal, S. K. „Is the small heat shock protein B-crystallin an oncogene?“ Journal of Clinical Investigation 116, Nr. 1 (08.12.2005): 30–32. http://dx.doi.org/10.1172/jci27462.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Bhat, Narayan R., und Krishna K. Sharma. „Microglial activation by the small heat shock protein, α-crystallin“. NeuroReport 10, Nr. 13 (September 1999): 2869–73. http://dx.doi.org/10.1097/00001756-199909090-00031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Lavoie, José, Pierre Chrétien und Jacques Landry. „Sequence of the Chinese hamster small heat shock protein HSP27“. Nucleic Acids Research 18, Nr. 6 (1990): 1637. http://dx.doi.org/10.1093/nar/18.6.1637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

WELSH, MICHAEL J., und MATTIAS GAESTEL. „Small Heat-Shock Protein Family: Function in Health and Disease“. Annals of the New York Academy of Sciences 851, Nr. 1 STRESS OF LIF (Juni 1998): 28–35. http://dx.doi.org/10.1111/j.1749-6632.1998.tb08973.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Tsuruma, T., A. Yagihashi, S. Koide, J. Araya, K. Tarumi, N. Watanabe und K. Hirata. „Geranylgeranylacetone induces heat shock protein-73 in rat small intestine“. Transplantation Proceedings 31, Nr. 1-2 (Februar 1999): 572–73. http://dx.doi.org/10.1016/s0041-1345(98)01559-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Sanmiya, Kazutsuka, Katsumi Suzuki, Yoshinobu Egawa und Mariko Shono. „Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants“. FEBS Letters 557, Nr. 1-3 (07.01.2004): 265–68. http://dx.doi.org/10.1016/s0014-5793(03)01494-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Leu, J. I.-Ju, Julia Pimkina, Amanda Frank, Maureen E. Murphy und Donna L. George. „A Small Molecule Inhibitor of Inducible Heat Shock Protein 70“. Molecular Cell 36, Nr. 1 (Oktober 2009): 15–27. http://dx.doi.org/10.1016/j.molcel.2009.09.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Hartman, D. „Haemonchus contortus: molecular characterisation of a small heat shock protein“. Experimental Parasitology 104, Nr. 3-4 (August 2003): 96–103. http://dx.doi.org/10.1016/s0014-4894(03)00138-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

de Jong, Wilfried W., Gert-Jan Caspers und Jack A. M. Leunissen. „Genealogy of the α-crystallin—small heat-shock protein superfamily“. International Journal of Biological Macromolecules 22, Nr. 3-4 (Mai 1998): 151–62. http://dx.doi.org/10.1016/s0141-8130(98)00013-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Jiao, Wangwang, Pulin Li, Junrui Zhang, Hui Zhang und Zengyi Chang. „Small heat-shock proteins function in the insoluble protein complex“. Biochemical and Biophysical Research Communications 335, Nr. 1 (September 2005): 227–31. http://dx.doi.org/10.1016/j.bbrc.2005.07.065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Helm, K. W., J. Schmeits und E. Vierling. „An Endomembrane-Localized Small Heat-Shock Protein from Arabidopsis thaliana“. Plant Physiology 107, Nr. 1 (01.01.1995): 287–88. http://dx.doi.org/10.1104/pp.107.1.287.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Wang, Keyang, und Abraham Spector. „ATP causes small heat shock proteins to release denatured protein“. European Journal of Biochemistry 268, Nr. 24 (15.12.2001): 6335–45. http://dx.doi.org/10.1046/j.0014-2956.2001.02580.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Vos, Michel J., Bart Kanon und Harm H. Kampinga. „HSPB7 is a SC35 speckle resident small heat shock protein“. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1793, Nr. 8 (August 2009): 1343–53. http://dx.doi.org/10.1016/j.bbamcr.2009.05.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bukach, Olesya V., Alim S. Seit-Nebi, Steven B. Marston und Nikolai B. Gusev. „Some properties of human small heat shock protein Hsp20 (HspB6)“. European Journal of Biochemistry 271, Nr. 2 (Januar 2004): 291–302. http://dx.doi.org/10.1046/j.1432-1033.2003.03928.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Park, Soo Min, und Choo Bong Hong. „Class I small heat-shock protein gives thermotolerance in tobacco“. Journal of Plant Physiology 159, Nr. 1 (Januar 2002): 25–30. http://dx.doi.org/10.1078/0176-1617-00660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Franzmann, Titus M. „Matrix-assisted refolding of oligomeric small heat-shock protein Hsp26“. International Journal of Biological Macromolecules 39, Nr. 1-3 (August 2006): 104–10. http://dx.doi.org/10.1016/j.ijbiomac.2006.02.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Badri, Kameswara R., Suhasini Modem, Herve C. Gerard, Insia Khan, Mihir Bagchi, Alan P. Hudson und Thipparthi R. Reddy. „Regulation of Sam68 activity by small heat shock protein 22“. Journal of Cellular Biochemistry 99, Nr. 5 (2006): 1353–62. http://dx.doi.org/10.1002/jcb.21004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

CHOWDARY, Tirumala Kumar, Bakthisaran RAMAN, Tangirala RAMAKRISHNA und Chintalagiri Mohan RAO. „Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity“. Biochemical Journal 381, Nr. 2 (06.07.2004): 379–87. http://dx.doi.org/10.1042/bj20031958.

Der volle Inhalt der Quelle
Annotation:
A newly identified 22 kDa protein that interacts with Hsp27 (heat-shock protein 27) was shown to possess the characteristic α-crystallin domain, hence named Hsp22, and categorized as a member of the sHsp (small Hsp) family. Independent studies from different laboratories reported the protein with different names such as Hsp22, H11 kinase, E2IG1 and HspB8. We have identified, on the basis of the nucleotide sequence analysis, putative heat-shock factor 1 binding sites upstream of the Hsp22 translation start site. We demonstrate that indeed Hsp22 is heat-inducible. We show, in vitro, chaperone-like activity of Hsp22 in preventing dithiothreitol-induced aggregation of insulin and thermal aggregation of citrate synthase. We have cloned rat Hsp22, overexpressed and purified the protein to homogeneity and studied its structural and functional aspects. We find that Hsp22 fragments on storage. MS analysis of fragments suggests that the fragmentation might be due to the presence of labile peptide bonds. We have established conditions to improve its stability. Far-UV CD indicates a randomly coiled structure for Hsp22. Quaternary structure analyses by glycerol density-gradient centrifugation and gel filtration chromatography show that Hsp22 exists as a monomer in vitro, unlike other members of the sHsp family. Hsp22 exhibits significantly exposed hydrophobic surfaces as reported by bis-8-anilinonaphthalene-l-sulphonic acid fluorescence. We find that the chaperone-like activity is temperature dependent. Thus Hsp22 appears to be a true member of the sHsp family, which exists as a monomer in vitro and exhibits chaperone-like activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Otani, Mieko, Toshiyuki Ueki, Satoshi Kozuka, Miki Segawa, Keiji Sano und Sumiko Inouye. „Characterization of a Small Heat Shock Protein, Mx Hsp16.6, of Myxococcus xanthus“. Journal of Bacteriology 187, Nr. 15 (01.08.2005): 5236–41. http://dx.doi.org/10.1128/jb.187.15.5236-5241.2005.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT A number of heat shock proteins in Myxococcus xanthus were previously identified by two-dimensional (2D) gel electrophoresis. One of these protein was termed Mx Hsp16.6, and the gene encoding Mx Hsp16.6 was isolated. Mx Hsp16.6 consists of 147 amino acid residues and has an estimated molecular weight of 16,642, in accordance with the apparent molecular mass in the 2D gel. An α-crystallin domain, typically conserved in small heat shock proteins, was found in Mx Hsp16.6. Mx Hsp16.6 was not detected during normal vegetative growth but was immediately induced after heat shock. Expression of the hsp16.6 gene was not induced by other stresses, such as starvation, oxidation, and high osmolarity. Mx Hsp16.6 was mostly localized in particles formed after heat shock and precipitated by low-speed centrifugation. Furthermore, Mx Hsp16.6 was detected in highly electron-dense particles in heat-shocked cells by immunoelectron microscopy, suggesting that it forms large complexes with heat-denatured proteins. An insertion mutation in the hsp16.6 gene resulted in lower viability during heat shock and lower acquired thermotolerance. Therefore, it is likely that Mx Hsp16.6 plays critical roles in the heat shock response in M. xanthus.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie