Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Skin-Electrode modeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Skin-Electrode modeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Skin-Electrode modeling"
Murphy, Brendan B., Brittany H. Scheid, Quincy Hendricks, Nicholas V. Apollo, Brian Litt und Flavia Vitale. „Time Evolution of the Skin–Electrode Interface Impedance under Different Skin Treatments“. Sensors 21, Nr. 15 (31.07.2021): 5210. http://dx.doi.org/10.3390/s21155210.
Der volle Inhalt der QuelleSawicki, B., und M. Okoniewski. „Adaptive Mesh Refinement Techniques for 3-D Skin Electrode Modeling“. IEEE Transactions on Biomedical Engineering 57, Nr. 3 (März 2010): 528–33. http://dx.doi.org/10.1109/tbme.2009.2032163.
Der volle Inhalt der QuelleMalnati, Claudio, Daniel Fehr, Fabrizio Spano und Mathias Bonmarin. „Modeling Stratum Corneum Swelling for the Optimization of Electrode-Based Skin Hydration Sensors“. Sensors 21, Nr. 12 (09.06.2021): 3986. http://dx.doi.org/10.3390/s21123986.
Der volle Inhalt der QuelleBrehm, Peter J., und Allison P. Anderson. „Modeling the Design Characteristics of Woven Textile Electrodes for Long-Term ECG Monitoring“. Sensors 23, Nr. 2 (04.01.2023): 598. http://dx.doi.org/10.3390/s23020598.
Der volle Inhalt der QuelleRamos, Airton, und Pedro Bertemes. „Electrode Probe Modeling for Skin Cancer Detection by using Impedance Method“. IEEE Latin America Transactions 10, Nr. 2 (März 2012): 1466–75. http://dx.doi.org/10.1109/tla.2012.6187588.
Der volle Inhalt der QuelleHua, P., E. J. Woo, J. G. Webster und W. J. Tompkins. „Finite element modeling of electrode-skin contact impedance in electrical impedance tomography“. IEEE Transactions on Biomedical Engineering 40, Nr. 4 (April 1993): 335–43. http://dx.doi.org/10.1109/10.222326.
Der volle Inhalt der QuelleAl-harosh, Mugeb, Egor Chernikov und Sergey Shchukin. „Patient Specific Numerical Modeling for Renal Blood Monitoring Using Electrical Bio-Impedance“. Sensors 22, Nr. 2 (13.01.2022): 606. http://dx.doi.org/10.3390/s22020606.
Der volle Inhalt der QuelleYeroshenko, Olha, Igor Prasol und Oleh Datsok. „SIMULATION OF AN ELECTROMYOGRAPHIC SIGNAL CONVERTER FOR ADAPTIVE ELECTRICAL STIMULATION TASKS“. Innovative Technologies and Scientific Solutions for Industries, Nr. 1 (15) (31.03.2021): 113–19. http://dx.doi.org/10.30837/itssi.2021.15.113.
Der volle Inhalt der QuelleEyvazi Hesar, Milad, Walid Madhat Munief, Achim Müller, Nikhil Ponon und Sven Ingebrandt. „Decomposition and modeling of signal shapes of single point cardiac monitoring“. Current Directions in Biomedical Engineering 6, Nr. 3 (01.09.2020): 583–86. http://dx.doi.org/10.1515/cdbme-2020-3149.
Der volle Inhalt der QuelleSavchuk, Arsen. „Development of a model of electric impedance in the contact between the skin and a capacitive active electrode when measuring electrocardiogram in combustiology“. Eastern-European Journal of Enterprise Technologies 2, Nr. 5 (110) (30.04.2021): 32–38. http://dx.doi.org/10.15587/1729-4061.2021.228735.
Der volle Inhalt der QuelleDissertationen zum Thema "Skin-Electrode modeling"
Gan, Yajian. „Analysis of bioelectric mechanisms at the skin-electrode interface for mobile acquisition of physiological signals : application to ECG measurement for the prevention of cardiovascular diseases“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0045.
Der volle Inhalt der QuelleCardiovascular diseases are becoming increasingly serious worldwide. Especially in the year 2020, when the world is suffering from the coronavirus. Clinical results have proved that both coronavirus and the therapeutic drug (chloroquine) can irreversibly damage the heart, such as arrhythmias. Compared to the ECG machine used in the hospitals that consumes plenty of patients’ time and money, single-lead mobile ECG monitors are the best solution for monitoring heart health anytime, anywhere. However, most of the handheld ECG monitoring devices on the market have not passed clinical testing due to the lack of accuracy and precision of measurement, mainly caused by the fact that the weak ECG signal is easily disturbed by the subject’s movement and the surrounding environment. This thesis investigates the most suitable material for the single-lead electrode at first. Secondly, extensive experiments have been designed and practiced analyzing the sources of ECG noise interference. The physicochemical model of the skin-electrode impedance is proposed at the same time. Finally, directly and indirectly method with the corresponding algorithm (transfer function/artificial intelligence) has been used to eliminate the interference in ECG signal when the motion artifact exists. This research aims to apply these findings to the optimization of the product “Witcard” and provide valuable experimental information to other researchers who work to improve the quality of ECG signal recording with signal-lead mobile ECG equipment
Buchteile zum Thema "Skin-Electrode modeling"
Köppä, S., V. Savolainen und J. Hyttinen. „Modelling Approach for Assessment of Electrode Configuration and Placement in Bioimpedance Measurements of Skin Irritation“. In IFMBE Proceedings, 1238–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23508-5_320.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Skin-Electrode modeling"
Saadi, Hyem, und Mokhtar Attari. „Electrode-gel-skin interface characterization and modeling for surface biopotential recording: Impedance measurements and noise“. In 2013 2nd International Conference on Advances in Biomedical Engineering (ICABME). IEEE, 2013. http://dx.doi.org/10.1109/icabme.2013.6648844.
Der volle Inhalt der Quelle