Auswahl der wissenschaftlichen Literatur zum Thema „Skin absorption“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Skin absorption" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Skin absorption"

1

Paweloszek, Raphaël, Stéphanie Briançon, Yves Chevalier, Nicole Gilon-Delepine, Jocelyne Pelletier und Marie-Alexandrine Bolzinger. „Skin Absorption of Anions: Part Two. Skin Absorption of Halide Ions“. Pharmaceutical Research 33, Nr. 7 (21.03.2016): 1576–86. http://dx.doi.org/10.1007/s11095-016-1898-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Im, Jueng-Eun, Hyang Yeon Kim, Jung Dae Lee, Jin-Ju Park, Kyung-Soo Kang und Kyu-Bong Kim. „Effect of Application Amounts on In Vitro Dermal Absorption Test Using Caffeine and Testosterone“. Pharmaceutics 13, Nr. 5 (30.04.2021): 641. http://dx.doi.org/10.3390/pharmaceutics13050641.

Der volle Inhalt der Quelle
Annotation:
Dermal absorption of chemicals is a key factor in risk assessment. This study investigated the effects of different amounts of application on dermal absorption and suggested an appropriate application dose for proper dermal absorption. Caffeine and testosterone were chosen as test compounds. An in vitro dermal absorption test was performed using a Franz diffusion cell. Different amounts (5, 10, 25, and 50 mg (or µL)/cm2) of semisolid (cream) and liquid (solution) formulations containing 1% caffeine and 0.1% testosterone were applied to rat and minipig (Micropig®) skins. After 24 h, the concentrations of both compounds remaining on the skin surface and in the stratum corneum, dermis and epidermis, and receptor fluid were determined using LC-MS / MS or HPLC. Dermal absorption of both compounds decreased with increasing amounts of application in both skin types (rat and minipig) and formulations (cream and solution). Especially, dermal absorptions (%) of both compounds at 50 mg (or µL)/cm2 was significantly lower compared to 5 or 10 mg (or µL)/cm2 in both rat and minipig skins. Therefore, a low dose (5 or 10 mg (or µL)/cm2) of the formulation should be applied to obtain conservative dermal absorption.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Florence, T. M., S. G. Lilley und J. L. Stauber. „SKIN ABSORPTION OF LEAD“. Lancet 332, Nr. 8603 (Juli 1988): 157–58. http://dx.doi.org/10.1016/s0140-6736(88)90702-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hostýnek, Jurij J., und Philip S. Magee. „ModellingIn VivoHuman Skin Absorption“. Quantitative Structure-Activity Relationships 16, Nr. 6 (1997): 473–79. http://dx.doi.org/10.1002/qsar.19970160606.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

TSURUTA, Hiroshi. „Skin Absorption of Solvent Mixtures. Effect of Vehicles on Skin Absorption of Toluene.“ INDUSTRIAL HEALTH 34, Nr. 4 (1996): 369–78. http://dx.doi.org/10.2486/indhealth.34.369.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hikima, Tomohiro, und Kakuji Tojo. „Skin models for percutaneous absorption.“ Drug Delivery System 16, Nr. 3 (2001): 179–81. http://dx.doi.org/10.2745/dds.16.179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Diembeck, Walter, Chantra Eskes, Jon R. Heylings, Gill Langley, Vera Rogiers, Johannes J. M. van de Sandt und Valérie Zuang. „3.5. Skin Absorption and Penetration“. Alternatives to Laboratory Animals 33, Nr. 1_suppl (Juli 2005): 105–7. http://dx.doi.org/10.1177/026119290503301s11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

CHEVILLARD, L., R. CHARONNAT und G. GIONO. „Skin Absorption of Nicotinic Esters“. Acta Medica Scandinavica 139, S259 (24.04.2009): 290. http://dx.doi.org/10.1111/j.0954-6820.1951.tb13342.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tsuruta, H. „Risk assessment of skin absorption by skin uptake solvents.“ SANGYO EISEIGAKU ZASSHI 40, Special (1998): 397. http://dx.doi.org/10.1539/sangyoeisei.kj00001990221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Halling-Overgaard, A. S., S. Kezic, I. Jakasa, K. A. Engebretsen, H. Maibach und J. P. Thyssen. „Skin absorption through atopic dermatitis skin: a systematic review“. British Journal of Dermatology 177, Nr. 1 (11.06.2017): 84–106. http://dx.doi.org/10.1111/bjd.15065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Skin absorption"

1

Baker, E. J. „Absorption of drugs across the skin“. Thesis, University of Nottingham, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378940.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Watkinson, Adam C. „Skin absorption of prostaglandins and related compounds“. Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407992.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wakefield, James Christopher. „Influence of skin irritation on dermal absorption“. Thesis, University of Newcastle upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435596.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Engblom, Johan. „On the phase behaviour of lipids with respect to skin barrier function“. Lund, Sweden : Dept. of Food Technology, Lund University, 1996. http://books.google.com/books?id=TdFqAAAAMAAJ.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ridout, G. „Percutaneous absorption of drugs“. Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Neupane, Rabin. „Percutaneous absorption and Skin accumulation of ABH Carbopol gel in Porcine Ear Skin“. University of Toledo Health Science Campus / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=mco1556641636092785.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Al-Otaibi, Faisal Obaid. „Pharmacokinetic studies of drug absorption into human skin“. Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/361.

Der volle Inhalt der Quelle
Annotation:
Optimum therapeutic outcomes require not only proper drug selection but also effective drug delivery and monitoring. The aim of this thesis was to A) study drug delivery through the skin with a liquid formulated to promote absorption, B) develop and validate methods to analyze the drug in the samples obtained, C) assess appropriate methods to measure the transdermal delivery of drug, and D) apply to pharmacodynamics. The stability of a rectal formulation of diazepam, Diastat®, and a quality control of a topical form, TDS® diazepam, were studied using high performance liquid chromatography (HPLC) with ultraviolet absorption detection (UV). It was found that diazepam at 10 mg/mL was stable in solution at various temperatures for at least 4 weeks. A pharmacokinetic study of diazepam delivery from the TDS® delivery system was compared with delivery of the drug following rectal administration of Diastat® in 12 healthy volunteers. The TDS® diazepam was evaluated for safety and no adverse effects or events were observed. The preparation was found to be able to deliver diazepam systemically in humans, the confidence interval (CI) of the ratios for Cmax and AUC of diazepam from the two formulations A (TDS®): B (rectal) were not contained within the bioequivalence limit 80–125%, Cmax (0–72h): 7.3–14% and AUC0-72h: 20–38%. In addition, the 90% CI of desmethyldiazepam (A:B) ratio were not contained within the bioequivalence limit, Cmax (0–72h): 38–54% and AUC0-72h: 33–58%. Although not bioequivalent to Diastat® these finding suggest that skin may be an alternative method of diazepam delivery but further developments and studies would be required. The development and validation of fast, high throughput methods to evaluate tetracaine from skin tape samples was another challenge. Sensitive and reliable capillary electrophoresis with UV and HPLC-UV methods were developed and validated to measure tetracaine in skin using tape samples from volunteers given 1 mL Ametop gel (4% w/w of tetracaine) to support a pharmacokinetic drug delivery study of Ametop. The results from these validation studies demonstrated an equal ability of the two methods to measure tetracaine concentrations reproducibly and accurately. The Bland Altman test was in a range of ± 1.96 SD from the mean (SD = ± 8.02, Mean = 2.23), and percentage error (± 20%.), which show an acceptable difference. The assays were found to possess both the sensitivity and specificity necessary to measure the analyte in the skin tape stripping at the concentrations range in these tapes. Finally, observation of appropriate methods to measure the transdermal drug in vivo techniques, such as microdialysis (MD) and tape stripping (TS) have been employed by plotting a concentration time profile to investigate the capability of measuring tetracaine (pharmacokinetics) in local tissue, instead of measuring tetracaine by conventional systemic measurements. The results showed that the tetracaine Cmax concentration was higher in the stratum corneum compared with the major metabolites of tetracaine, 4- butylaminobenzoic acid (BABA) by 3 and 10 times in MD and plasma, respectively. TS samples reached the maximum concentration quicker than BABA in dialysate and plasma samples (p = 0.002). The median tmax was higher in plasma (IQR -53minutes, 95% CI: - 30– -105) compared with tape samples. The AUC and Cmax for tetracaine were higher in TS compared with BABA in MD and plasma (Mean AUC0-4h: 88582, 55594 and 13208 nM.min: Mean Cmax (0–4h), 850, 459, 110 nM, respectively). In addition, the AUC and Cmax values demonstrated that data from the TS study showed less variability compared with the data from plasma. The most variable data were for MD (CV%; AUC0-4h, 24, 63, and 85%: Cmax (0–4h), 42, 60, 80%, respectively). AUC and Cmax (Bartlett’s test, p = 0.004 for AUC; and Levene’s test, p = 0.042, and 0.028, respectively) This thesis has demonstrated that 1) diazepam was successfully delivered through the skin into the systemic circulation by the TDS® system, 2) novel methods have been developed for the measurement of tetracaine and its metabolite, and 3) the methods have been successfully applied to three different sample types employed in pharmacokinetic studies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lashmar, U. T. „Vehicle effects on percutaneous absorption“. Thesis, Open University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370508.

Der volle Inhalt der Quelle
Annotation:
The availability of a drug from a topical preparation is dependent on many factors, one of the most important being the composition of the vehicle. Glycerol, propylene glycol and polyethylene glycol 200 are widely used as ingredients in topical formulations. The aim of this study was to examine how these glycols affected some of the fundamental factors involved in percutaneous absorption of ethyl- methyl- and glycol salicylate. To do this, certain drug-vehicle, drug-vehicle-skin and vehicle-skin interactions were investigated. Drug-vehicle interactions were evaluated using solubility - and rheological measurements, equilibrium dialysis, diffusion coefficient - and release rate determinations. In particular, the study showed that it is important to consider the viscosity contribution of a cosolvent to the vehicle and that it is essential not to over solubilise a drug in the vehicle. The evaluation of drug-vehicle-skin interactions involved both in vitro and in vivo determinations. The in vitro study consisted of solubility- and partition coefficient measurements together with determination of diffusion coefficients and penetration rates for the drugs and the glycols using a two compartment cell in which nude mouse skin was the rate controlling barrier. In vivo, the concentrations of the glycols were determined in the individual layers in the skin and in the plasma of nude mice. The flux of the salicylates was largely unaffected by the various solvent concentrations and the different solvents, except when high concentrations of propylene glycol and glycerol were employed. The measurements of glycerol and propylene glycol in the skin and plasma suggested that the amount of the glycols penetrating into the skin from a topical application were unlikely to have any effect on the partition coefficient of a drug between the vehicle and the skin or the diffusivity of the drug in the skin phase. A comparison of the in vivo and in vitro results indicated a good correlation between these studies. In vivo and in vitro histological assessment were employed to evaluate vehicle-skin effects. Applications of glycerol and PEG 200 had no effect on the skin, whereas increasing concentrations of propylene glycol caused progressive disintegration of the stratum corneum. Some `penetration enhancers' showed unacceptable levels of skin damage and/or irritancy. Future studies may correlate these findings with their penetration enhancing properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hinselwood, David C. „The absorption and metabolism of cinnamic compounds in skin“. Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jung, Connie Tom. „PERCUTANEOUS ABSORPTION OF CATECHOL IN RAT AND HUMAN SKIN“. University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin971368708.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Skin absorption"

1

E, Redelmeier Thomas, Hrsg. Skin barrier: Principles of percutaneous absorption. Basel: Karger, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kielhorn, J. Dermal absorption. Geneva: World Health Organization, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

1942-, Bronaugh Robert L., und Maibach Howard I, Hrsg. Percutaneous absorption: Drugs--cosmetics--mechanisms--methodology. 3. Aufl. New York: Dekker, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

1942-, Bronaugh Robert L., und Maibach Howard I, Hrsg. Topical absorption of dermatological products. New York: Marcel Dekker, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

1954-, Guy Richard H., Hrsg. Metals and the skin: Topical effects and systemic absorption. New York: Marcel Dekker, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

W, Smith Eric, und Maibach Howard I, Hrsg. Percutaneous penetration enhancers. Boca Raton: CRC Press, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Edmond, Riviere J., Hrsg. Dermal absorption models in toxicology and pharmacology. Boca Raton: Taylor & Francis, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Commission of the European Communities., Hrsg. Skin penetration: Hazardous chemicals at work. London: Taylor & Francis, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

1949-, Walters Kenneth A., Hrsg. Dermatological and transdermal formulations. New York: M. Dekker, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

P, Chilcott Robert, und Price Shirley Dr, Hrsg. Principles and practice of skin toxicology. Chichester, West Sussex, England: John Wiley & Sons, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Skin absorption"

1

Yourick, Jeffrey J., und Margaret E. K. Kraeling. „Understanding Skin Metabolism–Effect on Altering In Vitro Skin“. In Percutaneous Absorption, 273–80. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Roul, Annick, und Howard I. Maibach. „Skin Decontamination 2020 Update“. In Percutaneous Absorption, 327–46. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yourick, Jeffrey J., und Margaret E. K. Kraeling. „Skin Absorption of Hair Dyes“. In Percutaneous Absorption, 381–96. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vater, Claudia, und Victoria Klang. „Effects of Phospholipids on Skin“. In Percutaneous Absorption, 715–24. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Roberts, Michael S., Sheree E. Cross und Yuri G. Anissimov. „The Skin Reservoir for Topically Applied Solutes“. In Percutaneous Absorption, 65–84. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Norlén, Lars. „Molecular Structure and Function of the Skin Barrier“. In Percutaneous Absorption, 1–8. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wester, Ronald C., Julie Christoffel, Tracy Hartway, Nicholas Poblete, Howard I. Maibach und James Forsell. „Human Cadaver Skin Viability for In Vitro Percutaneous Absorption“. In Percutaneous Absorption, 725–30. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-50.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Moss, Gary P., Darren R. Gullick und Simon C. Wilkinson. „Skin Structure and Physiology“. In Predictive Methods in Percutaneous Absorption, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47371-9_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gomaa, Yasmine, und Mark R. Prausnitz. „Delivery of Drugs, Vaccines, and Cosmeceuticals to Skin Using Microneedle Patches“. In Percutaneous Absorption, 585–608. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Maibach, Howard I. „Chemical Warfare Agent VX Penetration through Military Uniform and Human Skin“. In Percutaneous Absorption, 347–54. 5. Aufl. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429202971-25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Skin absorption"

1

Vargas-Luna, M. „Skin absorption studied by photoacoustic techniques“. In The fourth mexican symposium on medical physics. AIP, 2000. http://dx.doi.org/10.1063/1.1328960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Norvang Nilsen, Lill T., Elisanne J. Fiskerstrand, J. Stuart Nelson, Michael W. Berns und Lars O. Svaasand. „Epidermal melanin absorption in human skin“. In BiOS Europe '95, herausgegeben von Guy P. Delacretaz, Rudolf W. Steiner, Lars O. Svaasand, Hansjoerg Albrecht und Thomas H. Meier. SPIE, 1996. http://dx.doi.org/10.1117/12.229548.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sun, Yi, Lun Tak Lam, Gary Moss, Maria Prapopoulou, Rod Adams, Neil Davey, David Gray und Mark Brown. „Predicting drug absorption rates through human skin“. In 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596603.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Masuda, Arata, Akira Sone, Takahiko Yamamura, Qing-Qing Ni und Run-Xin Zhang. „Shock absorption capability of woven SMA skin“. In Smart Structures and Materials, herausgegeben von Ralph C. Smith. SPIE, 2005. http://dx.doi.org/10.1117/12.599481.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tewari, Priyamvada, Martin O. Culjat, Zachary D. Taylor, Jonathan Y. Suen, Benjamin O. Burt, Hua Lee, Elliott R. Brown, Warren S. Grundfest und Rahul S. Singh. „Role of collagen in terahertz absorption in skin“. In SPIE BiOS: Biomedical Optics, herausgegeben von Anita Mahadevan-Jansen, Tuan Vo-Dinh und Warren S. Grundfest. SPIE, 2009. http://dx.doi.org/10.1117/12.816433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Larese, F., A. Fiorito, G. Adami und R. Bussani. „276. Skin Absorption In Vitro of Glycol Ethers“. In AIHce 1999. AIHA, 1999. http://dx.doi.org/10.3320/1.2763123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hattori, Kazuhisa, Tomohiro Kuwahara, Masato Ohmi, Masamitsu Haruna, Shinpei Okawa, Kazuto Masamoto und Yukio Yamada. „Measurement of Optical Properties of Human Skin“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44475.

Der volle Inhalt der Quelle
Annotation:
In order to predict the skin colors, we need to analyze the reflection spectra of the skins. For the diffuse reflection, it is essential to know the skin optical properties that describe the propagation of light in the skin. We measure the absorption coefficient μa, scattering coefficient μs, scattering phase function p(θ) and refractive index n of human skins in this study. We attempt to build a measurement system which can accurately measure the optical properties of the skin samples with a size of as small as 5 mm and a thickness of as thin as 50 micrometer in the visible wavelength range with the wavelength step of 50 nm. Then we measured the optical properties of stratum corneum obtained from a cultured model of human epidermis and those of epidermis obtained from human skin. The effect of the exposure of epidermis to sunlight on the optical properties is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nasouri, Babak, Thomas E. Murphy und Halil Berberoglu. „Near infrared laser penetration and absorption in human skin“. In SPIE BiOS, herausgegeben von Michael R. Hamblin, James D. Carroll und Praveen Arany. SPIE, 2014. http://dx.doi.org/10.1117/12.2040337.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Guo, Lijun, Zhan Zhao, Deyi Kong, Shaohua Wu, Lidong Du und Zhen Fang. „A high absorption coefficient DL-MPP imitating owl skin“. In ADVANCES IN OCEAN ACOUSTICS: Proceedings of the 3rd International Conference on Ocean Acoustics (OA2012). AIP, 2012. http://dx.doi.org/10.1063/1.4765956.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Halder, Rabindra K., Alvin Katz, Howard E. Savage, Vladimir Kartazayev, Steven A. McCormick, Yury Budansky, Misu Paul, Richard B. Rosen und Robert R. Alfano. „Laser skin welding using water absorption and heat management“. In Biomedical Optics 2005, herausgegeben von Kenneth E. Bartels, Lawrence S. Bass, Werner T. W. de Riese, Kenton W. Gregory, Henry Hirschberg, Abraham Katzir, Nikiforos Kollias et al. SPIE, 2005. http://dx.doi.org/10.1117/12.592795.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Skin absorption"

1

McDougal, J., D. Pollard, D. Dodd und R. Davis. Dermal Absorption of Comp B and CRB-12 in Isolated Rat Skin. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada453182.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Singh, Jagdish. DEPSCoR 99 Percutaneous Absorption, Skin Biophysics and Dermatotoxicity from JP-8 Jet Fuel. Fort Belvoir, VA: Defense Technical Information Center, Juli 2003. http://dx.doi.org/10.21236/ada417176.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Riviere, J. E., N. A. Monteiro-Riviere und K. F. Bowman. Development of In Vitro Isolated Perfused Porcine Skin Flaps for Study of Percutaneous Absorption of Xenobiotics. Fort Belvoir, VA: Defense Technical Information Center, Juni 1987. http://dx.doi.org/10.21236/ada204615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Riviere, J. E., M. P. Carver, N. A. Monteiro-Riviere und K. F. Bowman. Development of In Vitro Isolated Perfused Porcine Skin Flaps for Study of Percutaneous Absorption of Xenobiotics. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada198960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yeatts, J. L., J. E. Riviere, J. D. Brooks und R. E. Baynes. Stereselective Absorption of Permethrin Through Silastic Membrane and Excised Porcine Skin In Vitro Flow Through Diffusion System. Fort Belvoir, VA: Defense Technical Information Center, März 2001. http://dx.doi.org/10.21236/ada402068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tao, Yang, Victor Alchanatis und Yud-Ren Chen. X-ray and stereo imaging method for sensitive detection of bone fragments and hazardous materials in de-boned poultry fillets. United States Department of Agriculture, Januar 2006. http://dx.doi.org/10.32747/2006.7695872.bard.

Der volle Inhalt der Quelle
Annotation:
As Americans become increasingly health conscious, they have increased their consumptionof boneless white and skinless poultry meat. To the poultry industry, accurate detection of bonefragments and other hazards in de-boned poultry meat is important to ensure food quality andsafety for consumers. X-ray imaging is widely used for internal material inspection. However,traditional x-ray technology has limited success with high false-detection errors mainly becauseof its inability to consistently recognize bone fragments in meat of uneven thickness. Today’srapid grow-out practices yield chicken bones that are less calcified. Bone fragments under x-rayshave low contrast from meat. In addition, the x-ray energy reaching the image detector varieswith the uneven meat thickness. Differences in x-ray absorption due to the unevenness inevitablyproduce false patterns in x-ray images and make it hard to distinguish between hazardousinclusions and normal meat patterns even by human visual inspection from the images.Consequently, the false patterns become camouflage under x-ray absorptions of variant meatthickness in physics, which remains a major limitation to detecting hazardous materials byprocessing x-ray images alone.Under the support of BARD, USDA, and US Poultry industries, we have aimed todeveloping a new technology that uses combined x-ray and laser imaging to detect bonefragments in de-boned poultry. The technique employs the synergism of sensors of differentprinciples and has overcome the deficiency of x-rays in physics of letting x-rays work alone inbone fragment detection. X-rays in conjunction of laser-based imaging was used to eliminatefalse patterns and provide higher sensitivity and accuracy to detect hazardous objects in the meatfor poultry processing lines.Through intensive research, we have met all the objectives we proposed during the researchperiod. Comprehensive experiments have proved the concept and demonstrated that the methodhas been capable of detecting frequent hard-to-detect bone fragments including fan bones andfractured rib and pulley bone pieces (but not cartilage yet) regardless of their locations anduneven meat thickness without being affected by skin, fat, and blood clots or blood vines.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie