Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Skeleton segmentation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Skeleton segmentation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Skeleton segmentation"
TAKUMA, Naoki, Koichiro DEGUCHI und Iwao MORISHITA. „Image Figure Segmentation Using Morphological Skeleton“. Transactions of the Society of Instrument and Control Engineers 29, Nr. 11 (1993): 1361–68. http://dx.doi.org/10.9746/sicetr1965.29.1361.
Der volle Inhalt der QuelleLee, Jonha, Dong-Wook Kim, Chee Won und Seung-Won Jung. „Graph Cut-Based Human Body Segmentation in Color Images Using Skeleton Information from the Depth Sensor“. Sensors 19, Nr. 2 (18.01.2019): 393. http://dx.doi.org/10.3390/s19020393.
Der volle Inhalt der QuelleMoreno-Avendano, Santiago, Daniel Mejia-Parra und Oscar Ruiz-Salguero. „Triangle mesh skeletonization using non-deterministic voxel thinning and graph spectrum segmentation“. MATEC Web of Conferences 336 (2021): 02030. http://dx.doi.org/10.1051/matecconf/202133602030.
Der volle Inhalt der QuelleGrun, Tobias B., und James H. Nebelsick. „Structural design of the minute clypeasteroid echinoid Echinocyamus pusillus“. Royal Society Open Science 5, Nr. 5 (Mai 2018): 171323. http://dx.doi.org/10.1098/rsos.171323.
Der volle Inhalt der QuelleSun, Xiaopeng, J. Pan und Xiaopeng Wei. „3D mesh skeleton extraction using prominent segmentation“. Computer Science and Information Systems 7, Nr. 1 (2010): 63–74. http://dx.doi.org/10.2298/csis1001063s.
Der volle Inhalt der QuelleCHENG, JIN-CHANG, und HON-SON DON. „SEGMENTATION OF BILEVEL IMAGES USING MATHEMATICAL MORPHOLOGY“. International Journal of Pattern Recognition and Artificial Intelligence 06, Nr. 04 (Oktober 1992): 595–628. http://dx.doi.org/10.1142/s0218001492000321.
Der volle Inhalt der QuelleLi Renzhong, 李仁忠, 刘哲闻 Liu Zhewen und 刘阳阳 Liu Yangyang. „Segmentation Algorithm Based on Point Cloud Skeleton“. Laser & Optoelectronics Progress 56, Nr. 22 (2019): 221102. http://dx.doi.org/10.3788/lop56.221102.
Der volle Inhalt der QuelleSingh, M., und J. Feldman. „Skeleton-based segmentation of shapes into parts“. Journal of Vision 8, Nr. 6 (29.03.2010): 719. http://dx.doi.org/10.1167/8.6.719.
Der volle Inhalt der QuelleGrosgeorge, Damien, Caroline Petitjean, Bernard Dubray und Su Ruan. „Esophagus Segmentation from 3D CT Data Using Skeleton Prior-Based Graph Cut“. Computational and Mathematical Methods in Medicine 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/547897.
Der volle Inhalt der QuelleKontges, G., und A. Lumsden. „Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny“. Development 122, Nr. 10 (01.10.1996): 3229–42. http://dx.doi.org/10.1242/dev.122.10.3229.
Der volle Inhalt der QuelleDissertationen zum Thema "Skeleton segmentation"
Hedström, Anders. „Automatic Segmentation of Skeleton in Whole-Body MR Images“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211221.
Der volle Inhalt der QuelleLidayová, Kristína. „Fast Methods for Vascular Segmentation Based on Approximate Skeleton Detection“. Doctoral thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318796.
Der volle Inhalt der QuellePérez, Rocha Ana Laura. „Segmentation and Line Filling of 2D Shapes“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23676.
Der volle Inhalt der QuelleHE, LEI. „A COMPARISON OF DEFORMABLE CONTOUR METHODS AND MODEL BASED APPROACH USING SKELETON FOR SHAPE RECOVERY FROM IMAGES“. University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1059746287.
Der volle Inhalt der QuelleBelbaisi, Adham. „Deep Learning-Based Skeleton Segmentation for Analysis of Bone Marrow and Cortical Bone in Water-Fat Magnetic Resonance Imaging“. Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297528.
Der volle Inhalt der QuelleLimkhaitir, Mohamed Mahmoud. „Modélisation des formes volumiques à partir d'images tomographiques 3D : application à la Caractérisation de l'espace poral du sol“. Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066556.
Der volle Inhalt der QuelleIn this thesis we present a primary representation for complex 3D volume shape. We de fine a 3D volume shape by a set of voxels derived from a computed tomography volume image. In a theoretical point of view, this set of voxels defi nes its indicatrix function. The basic idea is to look for a compact, stable and robust piece wise analytic approximation of the shape which conserves its topological and geometrical properties. We propose to describe a volume shape by a minimal number of balls included within the shape and recovering the shape skeleton. We show that it is equivalent to find out a (fi nite) minimal set of "maximal balls" recovering the skeleton. In the case where the absolute values of the principal curvatures of the shape envelope are bounded above we prove that such a finite set does exist. Indeed, our new shape representation provides an optimal description of the shape cavities. We propose an algorithm based on Delaunay 3D triangulation to compute the MISS of a volume shape described by a set of voxels. Afterwards, this representation can be used to approximate the shape using more sophisticated primitives like cylinders, cones, generalized cylinders. We propose algorithms to provide optimal cylinders and cones from ball network. The final result is an intrinsic and robust description of the initial shape using both balls, cylinders, cones. This scheme can be extended by using also curved cylinders and curved cones. Finally, we apply our algorithm to 3D volume Computed Tomography soil data in order to provide intrinsic and robust geometrical description of pore space to be used for biological dynamics simulation and modeling
Erdem, Mehmet Erkut. „Simultaneous Bottom-up/top-down Processing In Early And Mid Level Vision“. Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12610167/index.pdf.
Der volle Inhalt der Quelle#64257
ed formulations where bottom-up and top-down processing take place simultaneously.
Gopalan, Sowmya. „Estimating Columnar Grain Size in Steel-Weld Images using Image Processing Techniques“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250621610.
Der volle Inhalt der QuelleEssafi, Salma. „3D Knowledge-based Segmentation Using Sparse Hierarchical Models : contribution and Applications in Medical Imaging“. Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00534805.
Der volle Inhalt der QuelleKarlsson, Edlund Patrick. „Methods and models for 2D and 3D image analysis in microscopy, in particular for the study of muscle cells“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9201.
Der volle Inhalt der QuelleBücher zum Thema "Skeleton segmentation"
F, Nielsen Poul M., Miller Karol und SpringerLink (Online service), Hrsg. Computational Biomechanics for Medicine: Soft Tissues and the Musculoskeletal System. New York, NY: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenBurton, Derek, und Margaret Burton. The skeleton, support and movement. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198785552.003.0003.
Der volle Inhalt der QuelleBuchteile zum Thema "Skeleton segmentation"
Gaillard, Mathieu, Chenyong Miao, James Schnable und Bedrich Benes. „Sorghum Segmentation by Skeleton Extraction“. In Computer Vision – ECCV 2020 Workshops, 296–311. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65414-6_21.
Der volle Inhalt der QuelleFeng, Cong, Andrei C. Jalba und Alexandru C. Telea. „Part-Based Segmentation by Skeleton Cut Space Analysis“. In Lecture Notes in Computer Science, 607–18. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18720-4_51.
Der volle Inhalt der QuelleLovato, Christian, Umberto Castellani und Andrea Giachetti. „Automatic Segmentation of Scanned Human Body Using Curve Skeleton Analysis“. In Computer Vision/Computer Graphics CollaborationTechniques, 34–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01811-4_4.
Der volle Inhalt der QuelleYangel, Boris, und Dmitry Vetrov. „Image Segmentation with a Shape Prior Based on Simplified Skeleton“. In Lecture Notes in Computer Science, 247–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23094-3_18.
Der volle Inhalt der QuelleWu, Zonghan, Baochang Zhang, Jun Yang, Na Li und Shoujun Zhou. „Segmentation of Arteriovenous Malformation Based on Weighted Breadth-First Search of Vascular Skeleton“. In Communications in Computer and Information Science, 294–301. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39343-4_25.
Der volle Inhalt der QuelleRabatel, Gilles, Anne-Gaëlle Manh, Marie-José Aldon und Bernard Bonicelli. „Skeleton-Based Shape Models with Pressure Forces: Application to Segmentation of Overlapping Leaves“. In Lecture Notes in Computer Science, 249–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45129-3_22.
Der volle Inhalt der QuelleNg, Kok-Why, Abdullah Junaidi und Sew-Lai Ng. „Semi-automatic Segmentation of 3D Point Clouds Skeleton without Explicit Computation for Critical Points“. In Lecture Notes in Computer Science, 783–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32695-0_73.
Der volle Inhalt der QuelleShankar, Venkatesh Gauri, Bali Devi, Ujwal Sachdeva und Harsh Harsola. „Real-Time Human Body Tracking System for Posture and Movement Using Skeleton-Based Segmentation“. In Micro-Electronics and Telecommunication Engineering, 499–510. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4687-1_48.
Der volle Inhalt der QuelleXie, Wenjie, Renato Perucchio, David Sedmera und Robert P. Thompson. „Topological Segmentation and Smoothing of Discrete Curve Skeletons“. In Computer-Aided Intelligent Recognition Techniques and Applications, 389–409. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470094168.ch20.
Der volle Inhalt der QuelleRöhrle, O., H. Köstler und M. Loch. „Segmentation of Skeletal Muscle Fibres for Applications in Computational Skeletal Muscle Mechanics“. In Computational Biomechanics for Medicine, 107–17. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9619-0_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Skeleton segmentation"
„Skeleton-Based Shape Segmentation“. In International Workshop on Image Mining Theory and Applications. SciTePress - Science and and Technology Publications, 2009. http://dx.doi.org/10.5220/0001963500840092.
Der volle Inhalt der QuelleNeubauer, Andre, und Rainer Wegenkittl. „Skeleton-based myocardium segmentation“. In Electronic Imaging 2003, herausgegeben von Robert F. Erbacher, Philip C. Chen, Jonathan C. Roberts, Matti T. Groehn und Katy Boerner. SPIE, 2003. http://dx.doi.org/10.1117/12.473945.
Der volle Inhalt der QuelleReniers, Dennie, und Alexandru Telea. „Skeleton-based Hierarchical Shape Segmentation“. In IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07). IEEE, 2007. http://dx.doi.org/10.1109/smi.2007.33.
Der volle Inhalt der QuelleCai, Ling, Fengna Wang, Valentin Enescu und Hichem Sahli. „Object Segmentation Based on Contour-Skeleton Duality“. In 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE, 2014. http://dx.doi.org/10.1109/icpr.2014.438.
Der volle Inhalt der Quellede Belen, Ryan Anthony J., und Rowel O. Atienza. „Automatic skeleton generation using hierarchical mesh segmentation“. In SA '16: SIGGRAPH Asia 2016. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2992138.2992150.
Der volle Inhalt der QuelleJacques Junior, Julio C. S., Claudio R. Jung und Soraia R. Musse. „Skeleton-based human segmentation in still images“. In 2012 19th IEEE International Conference on Image Processing (ICIP 2012). IEEE, 2012. http://dx.doi.org/10.1109/icip.2012.6466815.
Der volle Inhalt der QuelleManolas, Iason, Aris S. Lalos und Konstantinos Moustakas. „Parallel 3D Skeleton Extraction Using Mesh Segmentation“. In 2018 International Conference on Cyberworlds (CW). IEEE, 2018. http://dx.doi.org/10.1109/cw.2018.00041.
Der volle Inhalt der QuelleYu, Donggang, Tuan D. Pham, Hong Yan, Wei Lai, Denis I. Crane, Tuan D. Pham und Xiaobo Zhou. „Segmentation and Reconstruction of Cultured Neuron Skeleton“. In COMPUTATIONAL MODELS FOR LIFE SCIENCES/CMLS '07. AIP, 2007. http://dx.doi.org/10.1063/1.2816626.
Der volle Inhalt der QuelleWshah, Safwan, Zhixin Shi und Venu Govindaraju. „Segmentation of Arabic Handwriting Based on both Contour and Skeleton Segmentation“. In 2009 10th International Conference on Document Analysis and Recognition. IEEE, 2009. http://dx.doi.org/10.1109/icdar.2009.152.
Der volle Inhalt der QuelleTal, Ayellet. „Mesh Segmentation for CAD Applications“. In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59565.
Der volle Inhalt der Quelle