Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sintering furnace“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sintering furnace" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sintering furnace"
Qu, Na, und Wen You. „Design and fault diagnosis of DCS sintering furnace’s temperature control system for edge computing“. PLOS ONE 16, Nr. 7 (06.07.2021): e0253246. http://dx.doi.org/10.1371/journal.pone.0253246.
Der volle Inhalt der QuelleKuzmin, Ilya V., Anton Yu Leshchenko, Sergey V. Pavlov, Rinat N. Shamsutdinov und Yuriy S. Mochalov. „Test bench for gas-dynamic studies in the furnace channel for nuclear fuel pellet sintering *“. Nuclear Energy and Technology 5, Nr. 2 (21.06.2019): 171–75. http://dx.doi.org/10.3897/nucet.5.36479.
Der volle Inhalt der QuelleNiu, Hongya, Wenjing Cheng, Wei Pian und Wei Hu. „The physiochemical properties of submicron particles from emissions of industrial furnace“. World Journal of Engineering 13, Nr. 3 (13.06.2016): 218–24. http://dx.doi.org/10.1108/wje-06-2016-029.
Der volle Inhalt der QuelleGerdes, T., Monika Willert-Porada, Ho Seon Park und A. Schmidt. „Production Scale m3 Batch Furnace for Hybrid-Heating and Microwave Sintering“. Advances in Science and Technology 45 (Oktober 2006): 869–74. http://dx.doi.org/10.4028/www.scientific.net/ast.45.869.
Der volle Inhalt der QuelleGanin, D. R., V. G. Druzhkov, A. A. Panychev und A. Yu Fuks. „Analysis of indices and operation improvement conditions of JSC “Ural Steel” blast furnace shop“. Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information, Nr. 12 (19.12.2018): 46–54. http://dx.doi.org/10.32339/0135-5910-2018-12-46-54.
Der volle Inhalt der QuelleSpišák, Jan, Martin Truchlý, Ján Mikula und Vratislav Šindler. „Caustic Magnesia Production in Microfluid Furnace“. Advanced Materials Research 1119 (Juli 2015): 529–32. http://dx.doi.org/10.4028/www.scientific.net/amr.1119.529.
Der volle Inhalt der QuelleThomazini, D., M. V. Gelfuso, A. S. A. Chinelatto, A. L. Chinelatto, F. K. Sanson und F. Teixeira Neto. „Alumina ceramics obtained by chemical synthesis using conventional and microwave sintering“. Cerâmica 57, Nr. 341 (März 2011): 45–49. http://dx.doi.org/10.1590/s0366-69132011000100006.
Der volle Inhalt der QuelleBrazenhall, M. V. J. „Furnace atmospheres for sintering“. Metal Powder Report 45, Nr. 9 (September 1990): 600–604. http://dx.doi.org/10.1016/0026-0657(90)90587-7.
Der volle Inhalt der QuelleSpirin, N. A., A. A. Polinov`, A. V. Pavlov, O. P. Onorin und G. N. Logachev. „Environmental and Technological Aspects of Converter Slag Utilization in Sintering and Blast-Furnace Production“. KnE Materials Science 2, Nr. 2 (03.09.2017): 19. http://dx.doi.org/10.18502/kms.v2i2.941.
Der volle Inhalt der QuelleNakamura, Masanori. „Vacuum sintering furnace for metals.“ DENKI-SEIKO[ELECTRIC FURNACE STEEL] 61, Nr. 3 (1990): 208–18. http://dx.doi.org/10.4262/denkiseiko.61.208.
Der volle Inhalt der QuelleDissertationen zum Thema "Sintering furnace"
Shen, Ruihua Materials Science & Engineering Faculty of Science UNSW. „Reduction of zinc oxide in sintering of manganese furnace dust“. Awarded by:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/44542.
Der volle Inhalt der QuelleHalilovic, Selma. „Evaluation of new powder grade for furnace control pieces in sintering process“. Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448371.
Der volle Inhalt der QuelleSubramaniam, Srinivas. „In Situ High Temperature Environmental Scanning Electron Microscopic Investigations of Sintering Behavior in Barium Titanate“. University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1155575558.
Der volle Inhalt der QuelleTelles, Victor Bridi. „Reciclagem da poeira de aciaria elétrica na sinterização de minério de ferro visando a eliminação de zinco“. Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-10012011-142919/.
Der volle Inhalt der QuelleThe aim of this work was to study the use of electric arc furnace dust (EAFD) in iron ore sintering process aiming zinc elimination. Firstly, physical and chemical characterizations of the waste were made using X-ray diffraction, microscopy, chemical and size analyses. Iron ore is the main component of the sintering process, this material was characterized by chemical, size and humidity analyses. After, micropellets composed of EAFD 70% and coke breeze 30% with diameters of 3.0-5.0 mm were produced, then they were dried in kiln and classified by sieving. The pellets were incorporated into the iron ore sintering charge using differents proportions, process conditions and addition forms (micropellets, undersize with diameters of 1.0-2.0 mm, or a mixture of EAFD and coke breeze). Sintered samples were collected in each sintering process. These materials were analyzed by scanning electron microscopy (SEM), macroscopy and chemical analysis using atomic absorption spectrophotometry in order to determine the zinc content. Samples of not sintered mixtures were also characterized by chemical analysis aiming the determination the initial amounts of zinc, i.e. in order to check the zinc amounts present in the mixture before the sintering process. The comparation between the zinc contents of sintered samples and not sintered allowed to determine the elimination of zinc during the experiments. About 92% of zinc was eliminated (along with the output gas) with the incorporation of 10% of micropellet in the sintering mixture. Results showed that the zinc elimination in the process is proportional to the ratio reducer/waste.
Nygårds, Erik, und Martin Oliw. „Utformning och installation av internetuppkopplad datalogger för kontinuerlig sintringsugn : Utveckling och implementation av Raspberry Pi baserad internetupkopplad datalogger, samt framtagning av lösningsförslag för viktmätning“. Thesis, Linköpings universitet, Maskinkonstruktion, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176753.
Der volle Inhalt der QuelleAraújo, José Alencastro de. „Reciclagem de pó de forno elétrico a arco para a produção de Aglomerado Pré-Fundido (APF) para uso em processo siderúrgico“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-01092014-093447/.
Der volle Inhalt der QuelleThe electric arc furnace (EAF) dust is generated during melting of steel scrap in electric arc furnaces and collected mainly through bag filters. The EAF dust is listed as hazardous waste from specific source, K061, according to ABNT 10004:2004. The major semi-integrated steel companies in the world have adopted for the treatment of EAF dust, basically three routes: the recovery of zinc and lead, through two complementary processes, a pyro-metallurgy, Waelz kiln and other hydro-metallurgical the leaching process of double oxide Waelz; the blanketing by blending with lime, water and additives in order to achieve the pH of the mixture>11, which ensures that heavy metals like lead, cadmium and zinc, present in furnace residue, can not become soluble, thereby avoiding the leaching and disposal in landfills of hazardous waste. This work suggests recycling of the EAF dust by sintering of a composite consisting of EAF dust agglomerate to coke particles (carbon source), mill scale (iron source) and ceramic fluorite (adictive agent used like fluxant) into pellets, a process known as sintering. As a result of the process is expected to obtain two by-products, the pre-cast agglomerated, PCA, with iron oxide content exceeding 70%, object of the process of sintering and zinc dust, containing more than 50% zinc oxide resulting from volatilization of this metal during the sintering process and collected by bag filter. Addition is expected to extract approximately 90% of lead and cadmium oxide contained in the initial EAF dust. The production of the PCA occurred in experimental scale divided into three stages, the first stage was performed with eight different formulations and checked by chemical analysis by X-ray fluorescence spectrometer and X-ray diffraction, the technical viability of using only solid waste industrial manufacturing PCA. The second phase, also with eight formulations, defined as planning experiments with factorial design, was tested the main effects and the double and triple interactions between the components of the PCA, to obtain the optimal formulation. The third phase was checked the intensity of the variables, coke fluorite ceramics, for removing zinc of PCA. The first two stages of the production tests were carried out on a pilot scale in a pilot plant sintering downstream and the third phase in a pilot plant xii upstream, both installed in the plant ArcelorMittal Piracicaba. The PCA, with the optimal formulation was produced on an industrial scale in the sinter plant Metalflexi also installed at the plant ArcelorMittal Piracicaba, and tested in small blast furnace. The zinc dust was characterized chemically for application in industries that use this element.
Bah, Micka. „Synthèse et propriétés fonctionnelles de céramiques et monocristaux piézoélectriques sans plomb (K, Na)NbO3“. Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4026/document.
Der volle Inhalt der QuelleThe purpose of this work is to elaborate different controlled microstructures of undoped (K0,5Na0,5)NbO3 by different methods, with full structural and microstructural characterization in order to study and to elucidate the influence of the densification and grain size effect on the piezoelectric properties. For this, it is necessary to produce KNN microstructures with controlled composition, starting with micrometer grain size, then millimeter and if possible centimeter grain size and to attain densification ranging from 80 % up to 95 % of the theoretical one. Beyond the KNN microstructure engineering, the growth of large (K0,5Na0,5)NbO3 single crystals about several mm3 with good crystallinity and full structural and microstructural characterization would enable the elastic, dielectric and piezoelectric tensors to be fully characterized as well as to validate the original characterization methods developed within the GREMAN laboratory
Hietava, A. (Anne). „Electrical behaviour of submerged arc furnace’s charge materials“. Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219394.
Der volle Inhalt der QuelleTiivistelmä Uppokaariuuni on osa ferrokromin valmistusprosessia. Uppokaariuuniin panostetaan kromiittipellejä, koksia, palarikastetta ja kvartsiittia. Etukuumennusuunista panos laskeutuu uppokaariuuniin, jossa se pelkistyy ja lopulta sulaa. Uppokaariuunin panoksen sähkönjohtavuus on tärkeää uunin toiminnan kannalta, koska se vaikuttaa suoraan esimerkiksi tuottavuuteen. Jotta virran kulku tapahtuisi optimaalisesti sulan metallin kautta, panoksen sähkönjohtavuuden tulee olla pieni uunin yläosissa ja suuri alaosassa lähellä elektrodien päitä. Mikäli virran kulku tapahtuu uunin yläosassa, hukataan lämpöenergiaa ja uunin toiminta hankaloituu. Tässä työssä on selvitetty koksin ja kromiittipellettien sähköisiä ominaisuuksia. Sähkönjohtavuutta on tutkittu useilla simuloiduilla prosessiolosuhteilla (koksin eri tekstuurit, kromiittipellettien eri pelkistysasteet, rikin pitoisuus atmosfäärissä ja kromiittipellettien valmistuksessa on korvattu koksi puuhiilellä). Nämä mittaukset on tehty huonelämpötilassa. Huomattiin, että toisin kuin koksin kaasutus, koksin lämpökäsittely (950°C) nosti grafitoitumisastetta ja vaikutti sähköisiin ominaisuuksiin. Kromiittipelletin pelkistymisasteen noustessa huonelämpötilassa mitattu sähkönjohtavuus laski. Kun kromiittipelletit altistetaan atmosfäärille, jossa on rikkiä, pellettien sähköiset ominaisuudet muuttuvat samoin kuin rakenne pelkistyksen aikana. Tämä vaikuttaa uppokaariuunin toimintaan, kun käytetään raaka-aineita, joissa rikkipitoisuus vaihtelee. Kun kromiittipellettien valmistuksessa käytettävä koksi korvataan puuhiilellä, tämä vaikuttaa sintrausprosessiin, kylmälujuuteen ja sähköisiin ominaisuuksiin
GHUSSN, LUCIANA. „Síntese e caracterização de vidros niobofosfatos e ferrofosfatos utilizados como meio para imobilização de Usub(3)Osub(8)“. reponame:Repositório Institucional do IPEN, 2005. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11347.
Der volle Inhalt der QuelleMade available in DSpace on 2014-10-09T13:58:30Z (GMT). No. of bitstreams: 1 11106.pdf: 6970470 bytes, checksum: 75dd1652faa57785066487ced8605c9d (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
MACHADO, GLAUSON A. F. „Recobrimentos à base de mulita em refratário de carbeto de silício obtidos a partir de PMSQ [POLI (METILSILSESQUIOXANO)] e alumínio“. reponame:Repositório Institucional do IPEN, 2017. http://repositorio.ipen.br:8080/xmlui/handle/123456789/27969.
Der volle Inhalt der QuelleMade available in DSpace on 2017-11-08T16:39:39Z (GMT). No. of bitstreams: 0
O carbeto de silício (SiC) é um material que apresenta baixa expansão térmica, altas resistências mecânica e ao choque térmico e alta condutividade térmica. Em razão disto é empregado na confecção de mobília de fornos de sinterização. O SiC no entanto sofre degradação a altas temperaturas quando submetido a atmosferas agressivas. A utilização de recobrimentos protetores evita a exposição direta da superfície do material à atmosfera dos fornos; a mulita pode ser um recobrimento protetor apropriado em razão de sua alta estabilidade em temperaturas elevadas e seu coeficiente de expansão térmica compatível com o do SiC (4x10-6/°C e 5,3x10-6/°C, respectivamente). No presente trabalho foi estudada a obtenção de recobrimento de mulita, para refratário de SiC, a partir da utilização de polímero precursor cerâmico e alumínio particulado. Foram preparadas composições com 10, 20, 30 e 50% (vol.) de alumínio adicionado ao polímero, sendo utilizados pós de alumínio de diferentes distribuições de tamanhos de partículas. As composições foram submetidas a diversos ciclos térmicos para determinação da condição mais adequada à obtenção de alto teor de mulita. A composição que apresentou melhor resultado foi a contendo 20% do pó de Al de menor tamanho de partículas. A partir desta, foi preparada e aplicada suspensão para ser aplicada sobre o refratário de SiC. A suspensão aplicada, após seca, reticulada e tratada termicamente a 1580°C, originou um recobrimento de mulita. Foram realizados ciclos de choque térmico em amostras com e sem recobrimento para comparação, num total de 26 ciclos. As condições foram 600°C/30 min. seguida de resfriamento ao ar até a temperatura ambiente. Após cada choque térmico, as amostras foram caracterizadas por microscopia óptica e eletrônica e determinado o módulo de elasticidade. Os recobrimentos apresentaram boa adesão e não foram detectados danos significativos após os choques térmicos.
Tese (Doutorado em Tecnologia Nuclear)
IPEN/T
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
Bücher zum Thema "Sintering furnace"
Lutzmann, Stefan. Beitrag zur Prozessbeherrschung des Elektronenstrahlschmelzens. München: Herbert Utz Verlag, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Sintering furnace"
Xu, Jinlong, Joyce Zhang und Ken Kuang. „Understanding the Influence of Belt Furnace and Sintering Parameters on Efficiency of Dye-Sensitized Solar Cells“. In Conveyor Belt Furnace Thermal Processing, 27–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69730-7_4.
Der volle Inhalt der QuelleBerroth, Karl, Rolf Wagner und Heinz U. Kessel. „Continuous Sintering Furnace for Non Oxide Ceramic Matrix Composites“. In High Temperature Ceramic Matrix Composites, 353–56. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527605622.ch56.
Der volle Inhalt der QuelleChang, Feng, Shengli Wu, Fengjie Zhang, Hua Lu und Kaiping Du. „Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust“. In Characterization of Minerals, Metals, and Materials 2015, 83–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093404.ch10.
Der volle Inhalt der QuelleChang, Feng, Shengli Wu, Fengjie Zhang, Hua Lu und Kaiping Du. „Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust“. In Characterization of Minerals, Metals, and Materials 2015, 83–90. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48191-3_10.
Der volle Inhalt der QuelleTeiles, V. B., D. C. R. Espinosa und J. A. S. Tenorio. „Recycling of Electric Arc Furnace Dust in Iron Ore Sintering“. In EPD Congress 2012, 339–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118359341.ch39.
Der volle Inhalt der QuelleGerdes, T., Monika Willert-Porada, Ho Seon Park und A. Schmidt. „Production Scale m3 Batch Furnace for Hybrid-Heating and Microwave Sintering“. In Advances in Science and Technology, 869–74. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.869.
Der volle Inhalt der QuellePlucknett, Kevin P. „Processing Factors Involved in Sintering β-Si3,N4,-Based Ceramics in an Air Atmosphere Furnace“. In Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials III, 45–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470584392.ch7.
Der volle Inhalt der QuelleBauer, R., und A. G. Degussa. „Sinter-Hip Furnaces - Sintering and Compacting in a Combined Cycle“. In Sintering ’87, 773–78. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1373-8_130.
Der volle Inhalt der QuelleKhachatryan, Hayk, Alok Vats, Zachary Doorenbos, Suren Kharatyan und Jan A. Puszynski. „Sintering of Combustion Synthesized TiB2 -ZrO2 Composite Powders in Conventional and Microwave Furnaces“. In Ceramic Transactions Series, 237–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470599730.ch24.
Der volle Inhalt der Quelleİsmail Tosun, Yildirim. „Concentration and Microwave Radiated Reduction of Southeastern Anatolian Hematite and Limonite Ores—Reduced Iron Ore Production“. In Iron Ores [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95231.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Sintering furnace"
Lacasa, David, Manuel Berenguel, Luis Yebra und Diego Martinez. „Copper sintering in a solar furnace through fuzzy control“. In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4776972.
Der volle Inhalt der QuelleCao, Shukun, Xiangbo Ze, Jing Xu und Lei Shi. „Intelligent Control System of Multi-segments Continuously Sintering Furnace“. In 2008 International Symposium on Knowledge Acquisition and Modeling (KAM). IEEE, 2008. http://dx.doi.org/10.1109/kam.2008.183.
Der volle Inhalt der QuelleCao, Shukun, Jing Xu, Lei Shi, Xiangbo Ze und Changsheng Ai. „Temperature Field Analysis of Multi-segments Continuously Sintering Furnace“. In 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop (KAM 2008 Workshop). IEEE, 2008. http://dx.doi.org/10.1109/kamw.2008.4810655.
Der volle Inhalt der QuelleLacasa, David, Manuel Berenguel, Luis Yebra und Diego Martinez. „Copper Sintering in a Solar Furnace through Fuzzy control“. In 2006 IEEE International Conference on Control Applications. IEEE, 2006. http://dx.doi.org/10.1109/cca.2006.286198.
Der volle Inhalt der QuelleGlo ek, J., D. D. und P. Pali ka. „Shaft Furnace Sintering Temperature Homogenization by the Coke Charging“. In 2015 International Conference on Industrial Technology and Management Science. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/itms-15.2015.196.
Der volle Inhalt der QuelleCao, Shu-kun, Jing Xu und Lei Shi. „The Temperature Control System of Continuously Multi-Segments Sintering Furnace“. In 2008 First International Conference on Intelligent Networks and Intelligent Systems (ICINIS). IEEE, 2008. http://dx.doi.org/10.1109/icinis.2008.181.
Der volle Inhalt der QuelleYun, Ling, Liu Zhongwei und Chen Gang. „Design and Optimization of Integrated Controller for Vacuum Sintering Furnace“. In 2009 International Conference on Energy and Environment Technology (ICEET 2009). IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.527.
Der volle Inhalt der QuelleTailin Yang, Yanbing Zong, Shaohua Li und Daqiang Cang. „Sintering behavior of ceramic bodies from electric arc furnace slag“. In 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). IEEE, 2014. http://dx.doi.org/10.1109/wartia.2014.6976193.
Der volle Inhalt der QuelleTong, Shaohua, Guiqin Li, Lixin Lu und Shuai Guo. „Design and Calculation of the Transmission System for Sintering Furnace“. In 2nd International Conference on Electronic and Mechanical Engineering and Information Technology. Paris, France: Atlantis Press, 2012. http://dx.doi.org/10.2991/emeit.2012.240.
Der volle Inhalt der QuelleCao, Shukun, Heng Zhang, Changsheng Ai, Lei Shi und Xiangbo Ze. „Mechanical Structure and Motion Control System Design for Continuously Sintering Furnace“. In 2009 International Conference on Advanced Computer Control. IEEE, 2009. http://dx.doi.org/10.1109/icacc.2009.138.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Sintering furnace"
Chen, I.-Wei. A Gas Pressure Sintering Furnace for Structural Ceramics. Fort Belvoir, VA: Defense Technical Information Center, Juli 2001. http://dx.doi.org/10.21236/ada388204.
Der volle Inhalt der Quelle