Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Single Player Monte Carlo Tree Search“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Single Player Monte Carlo Tree Search" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Single Player Monte Carlo Tree Search"
Schadd, Maarten P. D., Mark H. M. Winands, Mandy J. W. Tak und Jos W. H. M. Uiterwijk. „Single-player Monte-Carlo tree search for SameGame“. Knowledge-Based Systems 34 (Oktober 2012): 3–11. http://dx.doi.org/10.1016/j.knosys.2011.08.008.
Der volle Inhalt der QuelleXia, Yu-Wei, Chao Yang und Bing-Qiu Chen. „A Path Planning Method Based on Improved Single Player-Monte Carlo Tree Search“. IEEE Access 8 (2020): 163694–702. http://dx.doi.org/10.1109/access.2020.3021748.
Der volle Inhalt der QuelleFuruoka, Ryota, und Shimpei Matsumoto. „Worker’s knowledge evaluation with single-player Monte Carlo tree search for a practical reentrant scheduling problem“. Artificial Life and Robotics 22, Nr. 1 (23.09.2016): 130–38. http://dx.doi.org/10.1007/s10015-016-0325-2.
Der volle Inhalt der QuelleWang, Mingyan, Hang Ren, Wei Huang, Taiwei Yan, Jiewei Lei und Jiayang Wang. „An efficient AI-based method to play the Mahjong game with the knowledge and game-tree searching strategy“. ICGA Journal 43, Nr. 1 (26.05.2021): 2–25. http://dx.doi.org/10.3233/icg-210179.
Der volle Inhalt der QuelleGuo, Jian, Yaoyao Shi, Zhen Chen, Tao Yu, Bijan Shirinzadeh und Pan Zhao. „Improved SP-MCTS-Based Scheduling for Multi-Constraint Hybrid Flow Shop“. Applied Sciences 10, Nr. 18 (08.09.2020): 6220. http://dx.doi.org/10.3390/app10186220.
Der volle Inhalt der QuelleFabbri, André, Frédéric Armetta, Éric Duchêne und Salima Hassas. „A Self-Acquiring Knowledge Process for MCTS“. International Journal on Artificial Intelligence Tools 25, Nr. 01 (Februar 2016): 1660007. http://dx.doi.org/10.1142/s0218213016600071.
Der volle Inhalt der QuelleMaes, Francis, David Lupien St-Pierre und Damien Ernst. „Monte Carlo Search Algorithm Discovery for Single-Player Games“. IEEE Transactions on Computational Intelligence and AI in Games 5, Nr. 3 (September 2013): 201–13. http://dx.doi.org/10.1109/tciaig.2013.2239295.
Der volle Inhalt der QuelleSpoerer, Kristian. „BI-DIRECTIONAL MONTE CARLO TREE SEARCH“. Asia-Pacific Journal of Information Technology and Multimedia 10, Nr. 01 (01.06.2021): 17–26. http://dx.doi.org/10.17576/apjitm-2021-1001-02.
Der volle Inhalt der QuelleLisy, Viliam. „ALTERNATIVE SELECTION FUNCTIONS FOR INFORMATION SET MONTE CARLO TREE SEARCH“. Acta Polytechnica 54, Nr. 5 (31.10.2014): 333–40. http://dx.doi.org/10.14311/ap.2014.54.0333.
Der volle Inhalt der QuelleRoberson, Christian, und Katarina Sperduto. „A Monte Carlo Tree Search Player for Birds of a Feather Solitaire“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 9700–9705. http://dx.doi.org/10.1609/aaai.v33i01.33019700.
Der volle Inhalt der QuelleDissertationen zum Thema "Single Player Monte Carlo Tree Search"
Žlebek, Petr. „Hra Sokoban a umělá inteligence“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442845.
Der volle Inhalt der QuellePaumard, Marie-Morgane. „Résolution automatique de puzzles par apprentissage profond“. Thesis, CY Cergy Paris Université, 2020. http://www.theses.fr/2020CYUN1067.
Der volle Inhalt der QuelleThe objective of this thesis is to develop semantic methods of reassembly in the complicated framework of heritage collections, where some blocks are eroded or missing.The reassembly of archaeological remains is an important task for heritage sciences: it allows to improve the understanding and conservation of ancient vestiges and artifacts. However, some sets of fragments cannot be reassembled with techniques using contour information or visual continuities. It is then necessary to extract semantic information from the fragments and to interpret them. These tasks can be performed automatically thanks to deep learning techniques coupled with a solver, i.e., a constrained decision making algorithm.This thesis proposes two semantic reassembly methods for 2D fragments with erosion and a new dataset and evaluation metrics.The first method, Deepzzle, proposes a neural network followed by a solver. The neural network is composed of two Siamese convolutional networks trained to predict the relative position of two fragments: it is a 9-class classification. The solver uses Dijkstra's algorithm to maximize the joint probability. Deepzzle can address the case of missing and supernumerary fragments, is capable of processing about 15 fragments per puzzle, and has a performance that is 25% better than the state of the art.The second method, Alphazzle, is based on AlphaZero and single-player Monte Carlo Tree Search (MCTS). It is an iterative method that uses deep reinforcement learning: at each step, a fragment is placed on the current reassembly. Two neural networks guide MCTS: an action predictor, which uses the fragment and the current reassembly to propose a strategy, and an evaluator, which is trained to predict the quality of the future result from the current reassembly. Alphazzle takes into account the relationships between all fragments and adapts to puzzles larger than those solved by Deepzzle. Moreover, Alphazzle is compatible with constraints imposed by a heritage framework: at the end of reassembly, MCTS does not access the reward, unlike AlphaZero. Indeed, the reward, which indicates if a puzzle is well solved or not, can only be estimated by the algorithm, because only a conservator can be sure of the quality of a reassembly
Šmejkal, Pavel. „Umělá inteligence pro počítačovou hru Children of the Galaxy“. Master's thesis, 2018. http://www.nusl.cz/ntk/nusl-387346.
Der volle Inhalt der QuelleBuchteile zum Thema "Single Player Monte Carlo Tree Search"
Schadd, Maarten P. D., Mark H. M. Winands, H. Jaap van den Herik, Guillaume M. J. B. Chaslot und Jos W. H. M. Uiterwijk. „Single-Player Monte-Carlo Tree Search“. In Computers and Games, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87608-3_1.
Der volle Inhalt der QuelleNijssen, J. A. M., und Mark H. M. Winands. „Enhancements for Multi-Player Monte-Carlo Tree Search“. In Computers and Games, 238–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17928-0_22.
Der volle Inhalt der QuelleNijssen, J. A. M., und Mark H. M. Winands. „Playout Search for Monte-Carlo Tree Search in Multi-player Games“. In Lecture Notes in Computer Science, 72–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31866-5_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Single Player Monte Carlo Tree Search"
Lan, Li-Cheng, Wei Li, Ting-Han Wei und I.-Chen Wu. „Multiple Policy Value Monte Carlo Tree Search“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/653.
Der volle Inhalt der QuelleGao, Chao, Martin Müller und Ryan Hayward. „Three-Head Neural Network Architecture for Monte Carlo Tree Search“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/523.
Der volle Inhalt der QuelleSarratt, Trevor, David V. Pynadath und Arnav Jhala. „Converging to a player model in Monte-Carlo Tree Search“. In 2014 IEEE Conference on Computational Intelligence and Games (CIG). IEEE, 2014. http://dx.doi.org/10.1109/cig.2014.6932881.
Der volle Inhalt der Quelleklementev, Egor, Arina Fedorovskaya, Farhad Hakimov, Hamna Aslam und Joseph Alexander Brow. „Monte Carlo Tree Search player for Mai- Star and Balance Evaluation“. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2020. http://dx.doi.org/10.1109/ssci47803.2020.9308322.
Der volle Inhalt der QuelleGreenwood, Garrison W., und Daniel Ashlock. „Monte Carlo Tree Search Strategies in 2-Player Iterated Prisoner Dilemma Games“. In 2020 IEEE Conference on Games (CoG). IEEE, 2020. http://dx.doi.org/10.1109/cog47356.2020.9231854.
Der volle Inhalt der QuelleRibeiro, Leonardo F. R., und Daniel R. Figueiredo. „Performance of Monte Carlo Tree Search Algorithms when Playing the Game Ataxx“. In XV Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/eniac.2018.4423.
Der volle Inhalt der QuelleSanselone, Maxime, Stéphane Sanchez, Cédric Sanza, David Panzoli und Yves Duthen. „Control of non player characters in a medical learning game with Monte Carlo tree search“. In GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2598394.2598473.
Der volle Inhalt der QuelleChowdhury, Moinul Morshed Porag, Christopher Kiekintveld, Son Tran und William Yeoh. „Bidding in Periodic Double Auctions Using Heuristics and Dynamic Monte Carlo Tree Search“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/23.
Der volle Inhalt der QuelleKoriche, Frédéric, Sylvain Lagrue, Éric Piette und Sébastien Tabary. „Constraint-Based Symmetry Detection in General Game Playing“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/40.
Der volle Inhalt der QuelleBaier, Hendrik, und Mark H. M. Winands. „MCTS-Minimax Hybrids with State Evaluations (Extended Abstract)“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/782.
Der volle Inhalt der Quelle