Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Single-Cell omics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Single-Cell omics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Single-Cell omics"
Choi, Joung Min, Chaelin Park und Heejoon Chae. „moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud“. PeerJ 12 (26.02.2024): e17006. http://dx.doi.org/10.7717/peerj.17006.
Der volle Inhalt der QuelleRusk, Nicole. „Multi-omics single-cell analysis“. Nature Methods 16, Nr. 8 (30.07.2019): 679. http://dx.doi.org/10.1038/s41592-019-0519-3.
Der volle Inhalt der QuelleChappell, Lia, Andrew J. C. Russell und Thierry Voet. „Single-Cell (Multi)omics Technologies“. Annual Review of Genomics and Human Genetics 19, Nr. 1 (31.08.2018): 15–41. http://dx.doi.org/10.1146/annurev-genom-091416-035324.
Der volle Inhalt der QuelleXu, Xing, Junxia Wang, Lingling Wu, Jingjing Guo, Yanling Song, Tian Tian, Wei Wang, Zhi Zhu und Chaoyong Yang. „Microfluidic Single‐Cell Omics Analysis“. Small 16, Nr. 9 (23.09.2019): 1903905. http://dx.doi.org/10.1002/smll.201903905.
Der volle Inhalt der QuelleWang, Le, und Bo Jin. „Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease“. Biology 13, Nr. 10 (30.09.2024): 783. http://dx.doi.org/10.3390/biology13100783.
Der volle Inhalt der QuelleMincarelli, Laura, Ashleigh Lister, James Lipscombe und Iain C. Macaulay. „Defining Cell Identity with Single-Cell Omics“. PROTEOMICS 18, Nr. 18 (28.05.2018): 1700312. http://dx.doi.org/10.1002/pmic.201700312.
Der volle Inhalt der QuelleYang, Xiaoxi, Yuqi Wen, Xinyu Song, Song He und Xiaochen Bo. „Exploring the classification of cancer cell lines from multiple omic views“. PeerJ 8 (18.08.2020): e9440. http://dx.doi.org/10.7717/peerj.9440.
Der volle Inhalt der QuelleDeng, Yanxiang, Amanda Finck und Rong Fan. „Single-Cell Omics Analyses Enabled by Microchip Technologies“. Annual Review of Biomedical Engineering 21, Nr. 1 (04.06.2019): 365–93. http://dx.doi.org/10.1146/annurev-bioeng-060418-052538.
Der volle Inhalt der QuelleRai, Muhammad Farooq, Chia-Lung Wu, Terence D. Capellini, Farshid Guilak, Amanda R. Dicks, Pushpanathan Muthuirulan, Fiorella Grandi, Nidhi Bhutani und Jennifer J. Westendorf. „Single Cell Omics for Musculoskeletal Research“. Current Osteoporosis Reports 19, Nr. 2 (09.02.2021): 131–40. http://dx.doi.org/10.1007/s11914-021-00662-2.
Der volle Inhalt der QuelleLv, Dekang, Xuehong Zhang und Quentin Liu. „Single-cell omics decipher tumor evolution“. Medicine in Omics 2 (September 2021): 100006. http://dx.doi.org/10.1016/j.meomic.2021.100006.
Der volle Inhalt der QuelleDissertationen zum Thema "Single-Cell omics"
Kim, Jieun. „Computational tools for the integrative analysis of muti-omics data to decipher trans-omics networks“. Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28524.
Der volle Inhalt der QuelleLin, Yingxin. „Statistical modelling and machine learning for single cell data harmonisation and analysis“. Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28034.
Der volle Inhalt der QuelleKim, Taiyun. „Development of statistical methods for integrative omics analysis in precision medicine“. Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28838.
Der volle Inhalt der QuelleBlampey, Quentin. „Deep learning and computational methods on single-cell and spatial data for precision medicine in oncology“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL116.
Der volle Inhalt der QuellePrecision medicine in oncology customizes treatments based on the unique genetic and molecular profiles of patients' tumors, which is crucial for enhancing therapeutic efficacy and minimizing adverse effects. As technological advancements yield increasingly precise data about the tumor microenvironment (TME), the complexity of this data also grows. Notably, spatial data — a recent and promising type of omics data — provides molecular information at the single-cell level while maintaining the spatial context of cells within tissues. To fully exploit this rich and complex data, deep learning is emerging as a powerful approach that overcomes multiple limitations of traditional approaches. This manuscript details the development of new deep learning and computational methods to enhance our analysis of intricate systems like single-cell and spatial data. Three tools are introduced: (i) Scyan, for cell type annotation in cytometry, (ii) Sopa, a general pipeline for spatial omics, and (iii) Novae, a foundation model for spatial omics. These methods are applied to multiple precision medicine projects, exemplifying how they deepen our understanding of cancer biology, facilitating the discovery of new biomarkers and identifying potentially actionable targets for precision medicine
Ronen, Jonathan. „Integrative analysis of data from multiple experiments“. Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21612.
Der volle Inhalt der QuelleThe development of high throughput sequencing (HTS) was followed by a swarm of protocols utilizing HTS to measure different molecular aspects such as gene expression (transcriptome), DNA methylation (methylome) and more. This opened opportunities for developments of data analysis algorithms and procedures that consider data produced by different experiments. Considering data from seemingly unrelated experiments is particularly beneficial for Single cell RNA sequencing (scRNA-seq). scRNA-seq produces particularly noisy data, due to loss of nucleic acids when handling the small amounts in single cells, and various technical biases. To address these challenges, I developed a method called netSmooth, which de-noises and imputes scRNA-seq data by applying network diffusion over a gene network which encodes expectations of co-expression patterns. The gene network is constructed from other experimental data. Using a gene network constructed from protein-protein interactions, I show that netSmooth outperforms other state-of-the-art scRNA-seq imputation methods at the identification of blood cell types in hematopoiesis, as well as elucidation of time series data in an embryonic development dataset, and identification of tumor of origin for scRNA-seq of glioblastomas. netSmooth has a free parameter, the diffusion distance, which I show can be selected using data-driven metrics. Thus, netSmooth may be used even in cases when the diffusion distance cannot be optimized explicitly using ground-truth labels. Another task which requires in-tandem analysis of data from different experiments arises when different omics protocols are applied to the same biological samples. Analyzing such multiomics data in an integrated fashion, rather than each data type (RNA-seq, DNA-seq, etc.) on its own, is benefitial, as each omics experiment only elucidates part of an integrated cellular system. The simultaneous analysis may reveal a comprehensive view.
Czerwińska, Urszula. „Unsupervised deconvolution of bulk omics profiles : methodology and application to characterize the immune landscape in tumors Determining the optimal number of independent components for reproducible transcriptomic data analysis Application of independent component analysis to tumor transcriptomes reveals specific and reproducible immune-related signals A multiscale signalling network map of innate immune response in cancer reveals signatures of cell heterogeneity and functional polarization“. Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB075.
Der volle Inhalt der QuelleTumors are engulfed in a complex microenvironment (TME) including tumor cells, fibroblasts, and a diversity of immune cells. Currently, a new generation of cancer therapies based on modulation of the immune system response is in active clinical development with first promising results. Therefore, understanding the composition of TME in each tumor case is critically important to make a prognosis on the tumor progression and its response to treatment. However, we lack reliable and validated quantitative approaches to characterize the TME in order to facilitate the choice of the best existing therapy. One part of this challenge is to be able to quantify the cellular composition of a tumor sample (called deconvolution problem in this context), using its bulk omics profile (global quantitative profiling of certain types of molecules, such as mRNA or epigenetic markers). In recent years, there was a remarkable explosion in the number of methods approaching this problem in several different ways. Most of them use pre-defined molecular signatures of specific cell types and extrapolate this information to previously unseen contexts. This can bias the TME quantification in those situations where the context under study is significantly different from the reference. In theory, under certain assumptions, it is possible to separate complex signal mixtures, using classical and advanced methods of source separation and dimension reduction, without pre-existing source definitions. If such an approach (unsupervised deconvolution) is feasible to apply for bulk omic profiles of tumor samples, then this would make it possible to avoid the above mentioned contextual biases and provide insights into the context-specific signatures of cell types. In this work, I developed a new method called DeconICA (Deconvolution of bulk omics datasets through Immune Component Analysis), based on the blind source separation methodology. DeconICA has an aim to decipher and quantify the biological signals shaping omics profiles of tumor samples or normal tissues. A particular focus of my study was on the immune system-related signals and discovering new signatures of immune cell types. In order to make my work more accessible, I implemented the DeconICA method as an R package named "DeconICA". By applying this software to the standard benchmark datasets, I demonstrated that DeconICA is able to quantify immune cells with accuracy comparable to published state-of-the-art methods but without a priori defining a cell type-specific signature genes. The implementation can work with existing deconvolution methods based on matrix factorization techniques such as Independent Component Analysis (ICA) or Non-Negative Matrix Factorization (NMF). Finally, I applied DeconICA to a big corpus of data containing more than 100 transcriptomic datasets composed of, in total, over 28000 samples of 40 tumor types generated by different technologies and processed independently. This analysis demonstrated that ICA-based immune signals are reproducible between datasets and three major immune cell types: T-cells, B-cells and Myeloid cells can be reliably identified and quantified. Additionally, I used the ICA-derived metagenes as context-specific signatures in order to study the characteristics of immune cells in different tumor types. The analysis revealed a large diversity and plasticity of immune cells dependent and independent on tumor type. Some conclusions of the study can be helpful in identification of new drug targets or biomarkers for immunotherapy of cancer
CAPORALE, NICOLO'. „A UNIFYING FRAMEWORK TO STUDY THE GENETIC AND ENVIRONMENTAL FACTORS SHAPING HUMAN BRAIN DEVELOPMENT“. Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/697871.
Der volle Inhalt der QuelleBücher zum Thema "Single-Cell omics"
Sweedler, Jonathan V., James Eberwine und Scott E. Fraser, Hrsg. Single Cell ‘Omics of Neuronal Cells. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2525-5.
Der volle Inhalt der QuelleSingle-Cell Omics. Elsevier, 2019. http://dx.doi.org/10.1016/c2017-0-02420-5.
Der volle Inhalt der QuelleSingle-Cell Omics. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-02201-x.
Der volle Inhalt der QuellePan, Xinghua, Shixiu Wu und Sherman M. Weissman, Hrsg. Introduction to Single Cell Omics. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-920-9.
Der volle Inhalt der QuelleEberwine, James, Jonathan V. Sweedler und Scott E. Fraser. Single Cell 'Omics of Neuronal Cells. Springer, 2022.
Den vollen Inhalt der Quelle findenSingle Cell 'Omics of Neuronal Cells. Springer, 2023.
Den vollen Inhalt der Quelle findenBarh, Debmalya, und Vasco Azevedo. Single-Cell Omics: Technological Advances and Applications. Elsevier Science & Technology, 2019.
Den vollen Inhalt der Quelle findenMenon, Swapna. Single Cell Sequencing Essentials in Brief: Single Cell RNA Sequencing and Orthogonal Omics Technologies. Independently Published, 2021.
Den vollen Inhalt der Quelle findenBarh, Debmalya, und Vasco Azevedo. Single-Cell Omics : Volume 2: Technological Advances and Applications. Elsevier Science & Technology Books, 2019.
Den vollen Inhalt der Quelle findenBarh, Debmalya, und Vasco Azevedo. Single-Cell Omics : Volume 1: Technological Advances and Applications. Elsevier Science & Technology, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Single-Cell omics"
Lynch, Mark, und Naveen Ramalingam. „Integrated Fluidic Circuits for Single-Cell Omics and Multi-omics Applications“. In Single Molecule and Single Cell Sequencing, 19–26. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6037-4_2.
Der volle Inhalt der QuelleWang, Jingshu, und Tianyu Chen. „Deep Learning Methods for Single-Cell Omics Data“. In Springer Handbooks of Computational Statistics, 109–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65902-1_6.
Der volle Inhalt der QuelleWang, Xinjun, Haoran Hu und Wei Chen. „Model-Based Clustering of Single-Cell Omics Data“. In Springer Handbooks of Computational Statistics, 85–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65902-1_5.
Der volle Inhalt der QuelleDemetçi, Pınar, Rebecca Santorella, Björn Sandstede und Ritambhara Singh. „Unsupervised Integration of Single-Cell Multi-omics Datasets with Disproportionate Cell-Type Representation“. In Lecture Notes in Computer Science, 3–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04749-7_1.
Der volle Inhalt der QuelleHan, Maozhen, Pengshuo Yang, Hao Zhou, Hongjun Li und Kang Ning. „Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research“. In Advances in Experimental Medicine and Biology, 117–37. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1503-8_6.
Der volle Inhalt der QuelleChau, Tran, Prakash Timilsena und Song Li. „Gene Regulatory Network Modeling Using Single-Cell Multi-Omics in Plants“. In Methods in Molecular Biology, 259–75. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3354-0_16.
Der volle Inhalt der QuelleLi, Yue, Gregory Fonseca und Jun Ding. „Multimodal Methods for Knowledge Discovery from Bulk and Single-Cell Multi-Omics Data“. In Machine Learning Methods for Multi-Omics Data Integration, 39–74. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36502-7_4.
Der volle Inhalt der QuelleMisra, Biswapriya B. „A Workflow in Single Cell-Type Metabolomics: From Data Pre-Processing and Statistical Analysis to Biological Insights“. In OMICS-Based Approaches in Plant Biotechnology, 105–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119509967.ch6.
Der volle Inhalt der QuelleLan, Wei, Shengzu Huang, Xun Sun, Haibo Liao, Qingfeng Chen und Junyue Cao. „Single-Cell Multi-omics Clustering Algorithm Based on Adaptive Weighted Hyper-laplacian Regularization“. In Bioinformatics Research and Applications, 373–82. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5131-0_32.
Der volle Inhalt der QuelleLin, Zhixiang. „Integrative Analyses of Single-Cell Multi-Omics Data: A Review from a Statistical Perspective“. In Springer Handbooks of Computational Statistics, 53–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65902-1_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Single-Cell omics"
Li, Xiaoli, Rui Zhang, Saba Aslam, Huijun Li, Yuxi Chen, Zequn Zhang, Ruey-Song Huang und Hongyan Wu. „scMonica: Single-cell Mosaic Omics Nonlinear Integration and Clustering Analysis“. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1579–83. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822866.
Der volle Inhalt der QuelleTaha, Manar H., Mohamed El-Hadidi und Sahar Ali Fawzi. „Deep Learning Applications in Single-Cell Multi-Omics Analysis: A Review“. In 2024 6th Novel Intelligent and Leading Emerging Sciences Conference (NILES), 85–88. IEEE, 2024. http://dx.doi.org/10.1109/niles63360.2024.10753202.
Der volle Inhalt der QuellePang, Shanchen, Jiarui Wu, Wenhao Wu, Hengxiao Li, Ruiqian Wang, Yulin Zhang und Shudong Wang. „scKADE: Single-Cell Multi-Omics Integration with Kolmogorov-Arnold Deep Embedding“. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 633–38. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822086.
Der volle Inhalt der QuelleLi, Jiawei, Shizhan Chen, Zongbo Han, Wei Li, Jijun Tang und Fei Guo. „Multi-Task Driven Multi-Level Dynamical Fusion for Single-Cell Multi-Omics Cell Type Annotation“. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1009–14. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822524.
Der volle Inhalt der QuelleLi, Enling, Lin Gao und Yusen Ye. „CellFeature: Cell and Feature Co-Embedding from Single-Cell Multi-Omics with Heterogeneous Graph Model“. In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 976–81. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10821837.
Der volle Inhalt der QuelleWolfgang, Seth, Skyler Ruiter, Marc Tunnell, Timothy Triche, Erin Carrier und Zachary DeBruine. „Value-Compressed Sparse Column (VCSC): Sparse Matrix Storage for Single-cell Omics Data“. In 2024 IEEE International Conference on Big Data (BigData), 4952–58. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825091.
Der volle Inhalt der QuelleZhao, Zhongming. „Session details: Single cell omics“. In BCB '21: 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3478669.
Der volle Inhalt der QuelleSingh, Ritambhara, Pinar Demetci, Giancarlo Bonora, Vijay Ramani, Choli Lee, He Fang, Zhijun Duan et al. „Unsupervised manifold alignment for single-cell multi-omics data“. In BCB '20: 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3388440.3412410.
Der volle Inhalt der QuellePrabhala, P., S. Lang, S. Wijk, R. Cattani, K. Kanzenbach, K. Malmros, S. Soneji et al. „Characterizing Molecular Targets in Lung Squamous Cell Carcinoma Using Single Cell Omics“. In American Thoracic Society 2024 International Conference, May 17-22, 2024 - San Diego, CA. American Thoracic Society, 2024. http://dx.doi.org/10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a4910.
Der volle Inhalt der QuelleDo, Van Hoan, und Stefan Canzar. „Identifying Cell Types in Single-Cell Multimodal Omics Data via Joint Embedding Learning“. In 2023 15th International Conference on Knowledge and Systems Engineering (KSE). IEEE, 2023. http://dx.doi.org/10.1109/kse59128.2023.10299517.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Single-Cell omics"
Wang, Daojing, und Steven Bodovitz. Single cell analysis: the new frontier in 'Omics'. Office of Scientific and Technical Information (OSTI), Januar 2010. http://dx.doi.org/10.2172/983315.
Der volle Inhalt der Quelle