Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Simulations rotor“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Simulations rotor" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Simulations rotor"
Fu, Ping, Hong Lei Zhang und Chuan Sheng Wang. „Finite-Element Analysis of Rotor in the Rubber Continuous Plasticator“. Key Engineering Materials 561 (Juli 2013): 174–77. http://dx.doi.org/10.4028/www.scientific.net/kem.561.174.
Der volle Inhalt der QuellePacholczyk, Michał, und Dariusz Karkosiński. „Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine“. Energies 13, Nr. 15 (29.07.2020): 3880. http://dx.doi.org/10.3390/en13153880.
Der volle Inhalt der QuelleHuang, Yong Yu, Qiu Yun Mo, Xu Zhang und Zu Peng Zhou. „Numerical Simulations of Spherical Vertical-Axis Wind Rotor“. Applied Mechanics and Materials 291-294 (Februar 2013): 456–60. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.456.
Der volle Inhalt der QuelleMao, Xiaochen, und Bo Liu. „Numerical investigation of tip clearance size effect on the performance and tip leakage flow in a dual-stage counter-rotating axial compressor“. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, Nr. 3 (15.02.2017): 474–84. http://dx.doi.org/10.1177/0954410016638878.
Der volle Inhalt der QuelleFletcher, T. M., und R. E. Brown. „Modelling the interaction of helicopter main rotor and tail rotor wakes“. Aeronautical Journal 111, Nr. 1124 (Oktober 2007): 637–43. http://dx.doi.org/10.1017/s0001924000004814.
Der volle Inhalt der QuelleLei, Yao, und Rongzhao Lin. „Effect of wind disturbance on the aerodynamic performance of coaxial rotors during hovering“. Measurement and Control 52, Nr. 5-6 (25.04.2019): 665–74. http://dx.doi.org/10.1177/0020294019834961.
Der volle Inhalt der QuelleLei, Yao, Yiqiang Ye und Zhiyong Chen. „Horizontal Wind Effect on the Aerodynamic Performance of Coaxial Tri-Rotor MAV“. Applied Sciences 10, Nr. 23 (01.12.2020): 8612. http://dx.doi.org/10.3390/app10238612.
Der volle Inhalt der QuelleSun, Zhenye, Wei Jun Zhu, Wen Zhong Shen, Wei Zhong, Jiufa Cao und Qiuhan Tao. „Aerodynamic Analysis of Coning Effects on the DTU 10 MW Wind Turbine Rotor“. Energies 13, Nr. 21 (03.11.2020): 5753. http://dx.doi.org/10.3390/en13215753.
Der volle Inhalt der QuelleBenti, Gudeta Berhanu, Rolf Gustavsson und Jan-Olov Aidanpää. „Speed-Dependent Bearing Models for Dynamic Simulations of Vertical Rotors“. Machines 10, Nr. 7 (10.07.2022): 556. http://dx.doi.org/10.3390/machines10070556.
Der volle Inhalt der QuelleLei, Yao, und Mingxin Cheng. „Aerodynamic performance of a Hex-rotor unmanned aerial vehicle with different rotor spacing“. Measurement and Control 53, Nr. 3-4 (31.01.2020): 711–18. http://dx.doi.org/10.1177/0020294019901313.
Der volle Inhalt der QuelleDissertationen zum Thema "Simulations rotor"
Narejo, Abdul Ahad. „3D design and simulations of NASA rotor 67“. Thesis, University West, Department of Engineering Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-814.
Der volle Inhalt der QuelleIn this master\2019s thesis work, research has been carried out to develop an automated and parameterized programming model in Matlab to generate a standard journal file, which can read by Gambit and produce a meshed 2D and 3D blade. This file then can be exported into mesh-formatted file for fluent for further simulations and numerical results.
Roca, León Enric. „Simulations aéro-mécaniques pour l'optimisation de rotors d'hélicoptère en vol d'avancement“. Thesis, Nice, 2014. http://www.theses.fr/2014NICE4076.
Der volle Inhalt der QuelleThis work addresses the development of a multi-Objective optimization framework for helicopter rotor blades using high-Fidelity simulation models. In particular, objective functions corresponding to hover and forward flight are considered. Two solvers are used to predict the rotor performance: the comprehensive rotor code HOST and the Computational Fluid Dynamics (CFD) solver elsA. The first research axis of this work is the characterization of the accuracy of each available prediction method. The influence of considering the blade elasticity, the rotor trim and/or simplified aerodynamics is characterized for each flight case using wind-Tunnel data. As a result, a numerical framework adapted to the optimization is developed. The second part of this work concerns the formulation and development of techniques adapted to the multi-Objective optimization of rotor blades in hover and in forward flight. Innovative algorithms based on competition (Nash Games) and cooperation (Multi-Gradient Descent) are presented as alternatives to traditional multi-Objective approaches. In order to reduce the simulation costs, a surrogate-Based framework is developed, including a multi-Fidelity strategy to predict the rotor performance in forward flight. These techniques are finally applied to a realistic rotor, considering trimmed elastic CFD computations in the forward flight case and rigid blade CFD computations in the hover case. The results are subsequently analyzed, demonstrating the potential of these techniques to obtain realistic designs realizing interesting trade-Offs
Gupta, Vinit. „Quad tilt rotor simulations in helicopter mode using computational fluid dynamics“. College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3172.
Der volle Inhalt der QuelleThesis research directed by: Aerospace Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Zhong, B. „Implicit multi-block Euler/Navier-Stokes simulations for hovering helicopter rotor“. Thesis, Cranfield University, 2003. http://dspace.lib.cranfield.ac.uk/handle/1826/10754.
Der volle Inhalt der QuelleZhong, Bowen. „Implicit multi-block Euler/Navier-Stokes simulations for hovering helicopter rotor“. Thesis, Cranfield University, 2003. http://dspace.lib.cranfield.ac.uk/handle/1826/10754.
Der volle Inhalt der QuelleJACQUES, REMI. „Simulations numeriques d'ecoulements transitionnels et turbulents dans des configurations de type rotor-stator“. Paris 11, 1997. http://www.theses.fr/1997PA112386.
Der volle Inhalt der QuelleParthasarathy, Nikhil Kaushik. „An efficient algorithm for blade loss simulations applied to a high-order rotor dynamics problem“. Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/189.
Der volle Inhalt der QuelleWells, Jesse Buchanan. „Effects of Turbulence Modeling on RANS Simulations of Tip Vortices“. Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/34343.
Der volle Inhalt der QuelleMaster of Science
Chatzisavvas, Ioannis [Verfasser], Bernhard [Akademischer Betreuer] Schweizer und Wolfgang [Akademischer Betreuer] Seemann. „Efficient Thermohydrodynamic Radial and Thrust Bearing Modeling for Transient Rotor Simulations / Ioannis Chatzisavvas ; Bernhard Schweizer, Wolfgang Seemann“. Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2018. http://d-nb.info/116838088X/34.
Der volle Inhalt der QuelleVerley, Simon. „Evaluation du couple "champ lointain" d'un rotor d'hélicoptère en vol stationnaire : analyse de résultats issus de simulations numériques de mécanique des fluides“. Phd thesis, Université d'Orléans, 2012. http://tel.archives-ouvertes.fr/tel-00904918.
Der volle Inhalt der QuelleBücher zum Thema "Simulations rotor"
Center, Ames Research, Hrsg. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle findenCenter, Ames Research, Hrsg. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle findenBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Den vollen Inhalt der Quelle findenBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. Cleveland, Ohio: Lewis Research Centre, 1990.
Den vollen Inhalt der Quelle findenLewis Research Center. Institute for Computational Mechanics in Propulsion., Hrsg. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Den vollen Inhalt der Quelle findenBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Den vollen Inhalt der Quelle findenBoretti, A. A. Two-dimensional Euler and Navier Stokes time accurate simulations of fan rotor flows. Cleveland, Ohio: NASA Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Den vollen Inhalt der Quelle findenBoretti, A. A. Two-dimensional Euler and Navier Stokes time accurate simulations of fan rotor flows. Cleveland, Ohio: NASA Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Den vollen Inhalt der Quelle finden1950-, Hill Gary, und Ames Research Center, Hrsg. Comparisons of elastic and rigid blade-element rotor models using parallel processing technology for piloted simulations. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1991.
Den vollen Inhalt der Quelle findenP, Friedmann Peretz, und Ames Research Center, Hrsg. Aeroelastic simulation of higher harmonic control. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Simulations rotor"
Neuhauser, Magdalena, Francis Leboeuf, Jean-Christophe Marongiu, Etienne Parkinson und Daniel Robb. „Simulations of Rotor–Stator Interactions with SPH-ALE“. In Advances in Hydroinformatics, 349–61. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-42-0_29.
Der volle Inhalt der QuelleSong, An, Xiang Luo, Zhongliang He und Jian He. „Numerical Investigation on Flow and Heat Transfer of a Rotor–Stator Cavity with Labyrinth Seal“. In Computational and Experimental Simulations in Engineering, 797–814. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42515-8_56.
Der volle Inhalt der QuelleHirose, Koichiro, Koji Fukudome und Makoto Yamamoto. „Three-Dimensional Simulation of Ice Crystal Trajectory with State Change Around Rotor Blade of Axial Fan“. In Computational and Experimental Simulations in Engineering, 235–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67090-0_20.
Der volle Inhalt der QuelleLandi, Giacomo, Travis Shive und Fabrizio Mandrile. „Rotor-Dynamic Computer Simulations of Rolling Bearing in High-Speed Rotating Machinery“. In Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, 1889–98. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06590-8_156.
Der volle Inhalt der QuelleMore, Shubhali, Amit Kumar und A. M. Pradeep. „Numerical Simulations on Performance of a Hybrid and a Tandem Rotor“. In Proceedings of the National Aerospace Propulsion Conference, 15–33. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2378-4_2.
Der volle Inhalt der QuelleGorasso, Luca, Liqin Wang und Chiara Gorasso. „Geometrical Optimization of Hydrodynamic Journal Bearings with Validated Simulations and Artificial Intelligence Tools“. In Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, 1057–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06590-8_86.
Der volle Inhalt der QuelleSurrey, S., J. H. Wendisch und F. Wienke. „Coupled Fluid-Structure Simulations of a Trimmed Helicopter Rotor in Forward Flight“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 359–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27279-5_32.
Der volle Inhalt der QuelleGiangaspero, G., M. Almquist, K. Mattsson und E. van der Weide. „Unsteady Simulations of Rotor Stator Interactions Using SBP-SAT Schemes: Status and Challenges“. In Lecture Notes in Computational Science and Engineering, 247–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19800-2_21.
Der volle Inhalt der QuelleAbo-Serie, Essam, und Elif Oran. „Flow Simulation of a New Horizontal Axis Wind Turbine with Multiple Blades for Low Wind Speed“. In Springer Proceedings in Energy, 93–106. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_10.
Der volle Inhalt der QuelleSezer-Uzol, Nilay, Ankur Gupta und Lyle N. Long. „3-D Time-Accurate Inviscid and Viscous CFD Simulations of Wind Turbine Rotor Flow Fields“. In Lecture Notes in Computational Science and Engineering, 457–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92744-0_57.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Simulations rotor"
Linton, Daniel, George Barakos, Ronny Widjaja und Ben Thornber. „A New Actuator Surface Model with Improved Wake Model for CFD Simulations of Rotorcraft“. In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–10. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12010.
Der volle Inhalt der QuelleGovindarajan, Bharath, und J. Leishman. „Predictions of Rotor and Rotor/Airframe Configurational Effects on Brownout Dust Clouds“. In Vertical Flight Society 70th Annual Forum & Technology Display, 1–27. The Vertical Flight Society, 2014. http://dx.doi.org/10.4050/f-0070-2014-9599.
Der volle Inhalt der QuelleSmith, Brendan, und Farhan Gandhi. „Quadcopter Noise Variation Due to Relative Rotor Phasing“. In Vertical Flight Society 80th Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1335.
Der volle Inhalt der QuelleCoder, James, und Norman Foster. „Structured, Overset Simulations for the 1st Rotor Hub Flow Workshop“. In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–10. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-11999.
Der volle Inhalt der QuelleHeister, Christoph. „Approximate Transition Prediction for the ONERA 7AD Rotor in Forward Flight using a Structured and Unstructured U/RANS solver“. In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11374.
Der volle Inhalt der QuelleLienard, Caroline, Raphaël Fukari, Itham Salah und Thomas Renaud. „RACER high-speed demonstrator: Rotor and rotor-head wake interactions with tail unit“. In Vertical Flight Society 80th Annual Forum & Technology Display, 1–13. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0074-2018-12699.
Der volle Inhalt der QuelleMisiorowski, Matthew, Assad Oberai und Farhan Gandhi. „A Computational Study on Rotor Interactional Effects for a Quadcopter in Edgewise Flight“. In Vertical Flight Society 80th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0074-2018-12705.
Der volle Inhalt der QuelleOrtun, Biel, Mark Potsdam, Khiem Truong und Hyeonsoo Yeo. „Rotor Loads Prediction on the ONERA 7A Rotor using Loose Fluid/Structure Coupling“. In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–21. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11370.
Der volle Inhalt der QuelleZhao, Jinggen, und Chengjian He. „Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM“. In Vertical Flight Society 70th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2014. http://dx.doi.org/10.4050/f-0070-2014-9567.
Der volle Inhalt der QuelleCoder, James, Philip Cross und Marilyn Smith. „Turbulence Modeling Strategies for Rotor Hub Flows“. In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-11994.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Simulations rotor"
Wenren, Yonghu, Joon Lim, Luke Allen, Robert Haehnel und Ian Dettwiler. Helicopter rotor blade planform optimization using parametric design and multi-objective genetic algorithm. Engineer Research and Development Center (U.S.), Dezember 2022. http://dx.doi.org/10.21079/11681/46261.
Der volle Inhalt der QuelleRivera-Casillas, Peter, und Ian Dettwiller. Neural Ordinary Differential Equations for rotorcraft aerodynamics. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48420.
Der volle Inhalt der QuelleBlaylock, Myra L., David Charles Maniaci und Brian R. Resor. Numerical Simulations of Subscale Wind Turbine Rotor Inboard Airfoils at Low Reynolds Number. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1178361.
Der volle Inhalt der QuelleChatagny, Laurent. PR-471-16206-R02 Suction Piping Effect on Pump Performance CFD. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2019. http://dx.doi.org/10.55274/r0011562.
Der volle Inhalt der QuelleAllen, Luke, Joon Lim, Robert Haehnel und Ian Dettwiller. Helicopter rotor blade multiple-section optimization with performance. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/41031.
Der volle Inhalt der QuelleWissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg und Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/40883.
Der volle Inhalt der QuelleAllen, Luke, Joon Lim, Robert Haehnel und Ian Detwiller. Rotor blade design framework for airfoil shape optimization with performance considerations. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/41037.
Der volle Inhalt der QuelleYang, Cheng-I., Minyee Jiang, Christopher J. Chesnakas und Stuart D. Jessup. Numerical Simulation of Tip Vortices of a Ducted Rotor. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada426510.
Der volle Inhalt der QuelleCarico, Dean, und Singli Garcia-Otero. Tilt Rotor Aircraft Modeling Using a Generic Simulation Structure,. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1995. http://dx.doi.org/10.21236/ada305253.
Der volle Inhalt der QuelleMittal, Rajat. Large-Eddy Simulation of the Tip-Flow of a Rotor in Hover. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2005. http://dx.doi.org/10.21236/ada440555.
Der volle Inhalt der Quelle