Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Simulation of snake-like robots“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Simulation of snake-like robots" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Simulation of snake-like robots"
Cao, Zhengcai, Dong Zhang, Biao Hu und Jinguo Liu. „Adaptive Path Following and Locomotion Optimization of Snake-Like Robot Controlled by the Central Pattern Generator“. Complexity 2019 (21.01.2019): 1–13. http://dx.doi.org/10.1155/2019/8030374.
Der volle Inhalt der QuelleHůlka, Tomáš, Radomil Matoušek, Ladislav Dobrovský, Monika Dosoudilová und Lars Nolle. „Optimization of Snake-like Robot Locomotion Using GA: Serpenoid Design“. MENDEL 26, Nr. 1 (26.05.2020): 1–6. http://dx.doi.org/10.13164/mendel.2020.1.001.
Der volle Inhalt der QuelleAbdulrab, Hakim Q. A., Ili Najaa Aimi Mohd Nordin, Muhammad Rusydi Muhammad Razif und Ahmad Athif Mohd Faudzi. „Snake-like Soft Robot Using 2-Chambers Actuator“. ELEKTRIKA- Journal of Electrical Engineering 17, Nr. 1 (16.04.2018): 34–40. http://dx.doi.org/10.11113/elektrika.v17n1.39.
Der volle Inhalt der QuelleVossoughi, Gholamreza, Hodjat Pendar, Zoya Heidari und Saman Mohammadi. „Assisted passive snake-like robots: conception and dynamic modeling using Gibbs–Appell method“. Robotica 26, Nr. 3 (Mai 2008): 267–76. http://dx.doi.org/10.1017/s0263574707003864.
Der volle Inhalt der QuelleIvan, Virgala, und Filakovský Filip. „CONCERTINA LOCOMOTION OF A SNAKE ROBOT IN THE PIPE“. TECHNICAL SCIENCES AND TECHNOLOG IES, Nr. 4 (14) (2018): 109–17. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-109-117.
Der volle Inhalt der QuelleHuynh, Phu Duc, und Tuong Quan Vo. „An application of genetic algorithm to optimize the 3-Joint carangiform fish robot’ s links to get the desired straight velocity“. Science and Technology Development Journal 18, Nr. 1 (31.03.2015): 27–36. http://dx.doi.org/10.32508/stdj.v18i1.920.
Der volle Inhalt der QuelleBarazandeh, Farshad, Hossein Rahnamafard, Mehdi Rajabizadeh und Hossein Faraji. „Engineering observation of lateral undulation in colubrid snakes for wheel-less locomotion“. Robotica 30, Nr. 7 (14.12.2011): 1079–93. http://dx.doi.org/10.1017/s0263574711001251.
Der volle Inhalt der QuelleDouadi, Lounis, Davide Spinello, Wail Gueaieb und Hassan Sarfraz. „Planar kinematics analysis of a snake-like robot“. Robotica 32, Nr. 5 (04.11.2013): 659–75. http://dx.doi.org/10.1017/s026357471300091x.
Der volle Inhalt der QuelleWoodford, Grant W., und Mathys C. du Plessis. „Complex Morphology Neural Network Simulation in Evolutionary Robotics“. Robotica 38, Nr. 5 (22.07.2019): 886–902. http://dx.doi.org/10.1017/s0263574719001140.
Der volle Inhalt der QuelleShethwala, Yash Dinesh, Ravi Pravinbhai Patel, Darshankumar Rajendrakumar Shah und Saurin M. Sheth. „A Novel Concept of Biomorphic Hyper-Redundant Snake Robot“. International Journal of Disaster Response and Emergency Management 2, Nr. 1 (Januar 2019): 33–49. http://dx.doi.org/10.4018/ijdrem.2019010103.
Der volle Inhalt der QuelleDissertationen zum Thema "Simulation of snake-like robots"
Call, Anson Jay. „Dynamic modeling and simulation of a snake-like robot“. Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/19523.
Der volle Inhalt der QuelleVidlák, Marek. „Článkové roboty“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232193.
Der volle Inhalt der QuelleMotyčková, Paulína. „Simulační modelování a řízení hadům podobných robotů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442848.
Der volle Inhalt der QuelleLiu, Zehao. „Obstacle Avoidance Path Planning for Worm-like Robot“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619457610715525.
Der volle Inhalt der QuelleAtakan, Baris. „3-d Grasping During Serpentine Motion With A Snake-like Robot“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606887/index.pdf.
Der volle Inhalt der QuelleCaglav, Engin. „A Snake-like Robot For Searching, Cleaning Passages From Debris And Dragging Victims“. Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607994/index.pdf.
Der volle Inhalt der Quelleit captured key aspects of snakes such as flexibility, redundancy and high adaptation. To depart from the mechanical limitations
a model of the implemented robot is designed in MATLAB - SIMMECHANICS including a model for the environment. The implemented model is based on the implemented snake like robot but possessed extra features. The model is controlled to perform common snake gaits for navigation. Obstacle avoidance, object (debri or victim) v reaching and object dragging behaviors are acquired for the implemented gaits. Object dragging is accomplished by pushing an object by head or the body of the robot without lifting. For effective navigation, appropriate snake gaits are conducted by the model. All control operations such as obstacle avoidance for each gait and gait selection
a network of self tunable FACL (fuzzy actor critic) fuzzy controllers is used. Although the adapted snake gaits result in the movements which have properties that are not a replica of the real snake gaits, self tunable controllers offered best available combination of gaits for all situations. Finally, truncated version of the controller network, where the implemented mechanical robot&
#8217
s abilities are not breached, is attached to the mechanical robot.
Ryo, Ariizumi. „Analysis of parametric gaits and control of non-parametric gaits of snake robots“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199266.
Der volle Inhalt der QuelleBatsios, Nicholas. „Design and construction of a multi-segment snake-like wheeled vehicle“. Ohio : Ohio University, 1997. http://www.ohiolink.edu/etd/view.cgi?ohiou1177610642.
Der volle Inhalt der QuelleThayer, Nicholas D. „Towards a Human-like Robot for Medical Simulation“. Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/35077.
Der volle Inhalt der QuelleMaster of Science
Ali, Shaukat. „Newton-Euler approach for bio-robotics locomotion dynamics : from discrete to continuous systems“. Phd thesis, Ecole des Mines de Nantes, 2011. http://tel.archives-ouvertes.fr/tel-00669588.
Der volle Inhalt der QuelleBücher zum Thema "Simulation of snake-like robots"
Hirose, Shigeo. Biologically inspired robots: Snake-like locomotors and manipulators. Oxford: Oxford University Press, 1993.
Den vollen Inhalt der Quelle findenBiologically inspired robots: Snake-like locomotors and manipulators. Oxford: Oxford University Press, 1993.
Den vollen Inhalt der Quelle findenBelievable Bots Can Computers Play Like People. Springer, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Simulation of snake-like robots"
Aubin, R., P. Blazevic und J. P. Guyvarch. „Simulation of a Novel Snake-Like Robot“. In Climbing and Walking Robots, 875–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_105.
Der volle Inhalt der QuelleCiurezu-Gherghe, L., N. Dumitru und C. Copilusi. „Design and Simulation of a Snake like Robot“. In New Advances in Mechanism and Machine Science, 263–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79111-1_26.
Der volle Inhalt der QuelleKhatib, O., O. Brock, K. S. Chang, D. Ruspini, L. Sentis, F. Conti und S. Viji. „Efficient Algorithms for Robots with Human-Like Structures and Interactive Haptic Simulation“. In Advances in Robot Kinematics, 89–98. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0657-5_10.
Der volle Inhalt der QuelleWalker, Ian D., Howie Choset und Gregory S. Chirikjian. „Snake-Like and Continuum Robots“. In Springer Handbook of Robotics, 481–98. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32552-1_20.
Der volle Inhalt der QuelleGuan, Zhuoqun, Jianping Huang, Zhiyong Jian, Linlin liu, Long Cheng und Kai Huang. „A Learning Based Recovery for Damaged Snake-Like Robots“. In Neural Information Processing, 26–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04239-4_3.
Der volle Inhalt der QuelleSuarez, Damaso Perez-Moneo, und Claudio Rossi. „Evolutionary Learning of Basic Functionalities for Snake-Like Robots“. In ROBOT2013: First Iberian Robotics Conference, 391–406. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03413-3_28.
Der volle Inhalt der QuelleNilsson, Martin. „Fast 3D Simulation of Snake Robot Motion“. In Distributed Autonomous Robotic Systems 2, 63–70. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-66942-5_7.
Der volle Inhalt der QuelleByrtus, Roman, und Jana Vechetová. „Trident Snake Robot Motion Simulation in V-Rep“. In Modelling and Simulation for Autonomous Systems, 27–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14984-0_3.
Der volle Inhalt der QuelleMelo, Kamilo, Jose Monsalve, Alvaro Di Zeo, Juan Leon, Andres Trujillo, Wilson Perdomo, Diego Roa und Laura Paez. „Integration Scheme for Modular Snake Robot Software Components“. In Modelling and Simulation for Autonomous Systems, 184–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13823-7_17.
Der volle Inhalt der QuelleMarín, Francisco Javier, Jorge Casillas, Manuel Mucientes, Aksel Andreas Transeth, Sigurd Aksnes Fjerdingen und Ingrid Schjølberg. „Learning Intelligent Controllers for Path-Following Skills on Snake-Like Robots“. In Intelligent Robotics and Applications, 525–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25489-5_51.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Simulation of snake-like robots"
Haghshenas-Jaryani, Mahdi, und GholamReza Vossoughi. „Trajectory Control of Snake-Like Robots in Operational Space Using a Double Layer Sliding Mode Controller“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46480.
Der volle Inhalt der QuelleQiao, Guifang, Xiulan Wen, Guangming Song, Di Liu und Qi Wan. „Effects of the compliant intervertebral discs in the snake-like robots: A simulation study“. In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2016. http://dx.doi.org/10.1109/robio.2016.7866423.
Der volle Inhalt der QuelleYong Chen, Zhaoding Qiu, Zhenli Lu und Limin Mao. „Numerical simulation of hydrodynamic characteristics of underwater snake-like robot“. In 2015 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, 2015. http://dx.doi.org/10.1109/iccais.2015.7338719.
Der volle Inhalt der QuelleYang, Bingsong, Liang Han, Guangming Li, Wenfu Xu und Bingshan Hu. „A modular amphibious snake-like robot: Design, modeling and simulation“. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2015. http://dx.doi.org/10.1109/robio.2015.7419054.
Der volle Inhalt der QuelleMohammadi, Alireza. „Design of Propulsive Virtual Holonomic Constraints for Planar Snake Robots“. In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5159.
Der volle Inhalt der QuelleVossoughi, Golamreza, Hodjat Pendar, Zoya Heidari und Saman Mohammadi. „Conception and Dynamic Modeling of an Assisted Passive Snake-Like Robot Using Gibbs-Appell Method“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85008.
Der volle Inhalt der QuelleMohammadi, Saman, Zoya Heidari, Hojjat Pendar, Aria Alasty und Gholamreza Vossoughi. „Optimal Control of an Assisted Passive Snake-Like Robot Using Feedback Linearization“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34988.
Der volle Inhalt der QuelleBing, Zhenshan, Christian Lemke, Zhuangyi Jiang, Kai Huang und Alois Knoll. „Energy-Efficient Slithering Gait Exploration for a Snake-Like Robot Based on Reinforcement Learning“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/785.
Der volle Inhalt der QuelleSastra, Jimmy, Willy Giovanni Bernal Heredia, Jonathan Clark und Mark Yim. „A Biologically-Inspired Dynamic Legged Locomotion With a Modular Reconfigurable Robot“. In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2402.
Der volle Inhalt der QuelleMelo, Kamilo, Juan Leon, Jose Monsalve, Vivian Fernandez und Daniel Gonzalez. „Simulation and control integrated framework for modular snake robots locomotion research“. In 2012 IEEE/SICE International Symposium on System Integration (SII 2012). IEEE, 2012. http://dx.doi.org/10.1109/sii.2012.6427341.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Simulation of snake-like robots"
Hoppel, Mark. Creation of Robotic Snake to Validate Contact Modeling in Simulation. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2013. http://dx.doi.org/10.21236/ada594656.
Der volle Inhalt der Quelle