Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Simulation of fault signals“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Simulation of fault signals" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Simulation of fault signals"
Liu, Xiaoyang, Haizhou Huang und Jiawei Xiang. „A Personalized Diagnosis Method to Detect Faults in a Bearing Based on Acceleration Sensors and an FEM Simulation Driving Support Vector Machine“. Sensors 20, Nr. 2 (11.01.2020): 420. http://dx.doi.org/10.3390/s20020420.
Der volle Inhalt der QuelleHuo, Linsheng, Gangbing Song, Satish Nagarajaiah und Hongnan Li. „Semi-active vibration suppression of a space truss structure using a fault tolerant controller“. Journal of Vibration and Control 18, Nr. 10 (07.10.2011): 1436–53. http://dx.doi.org/10.1177/1077546311421514.
Der volle Inhalt der QuelleZhang, Changfan, Huijun Liao, Xiangfei Li, Jian Sun und Jing He. „Fault Reconstruction Based on Sliding Mode Observer for Current Sensors of PMSM“. Journal of Sensors 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/9307560.
Der volle Inhalt der QuelleFei, Cheng-Wei, Yat-Sze Choy, Guang-Chen Bai und Wen-Zhong Tang. „Multi-feature entropy distance approach with vibration and acoustic emission signals for process feature recognition of rolling element bearing faults“. Structural Health Monitoring 17, Nr. 2 (24.01.2017): 156–68. http://dx.doi.org/10.1177/1475921716687167.
Der volle Inhalt der QuelleDou, Chun Hong. „Fault Feature Extraction for Gearboxes Using Empirical Mode Decomposition“. Advanced Materials Research 383-390 (November 2011): 1376–80. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.1376.
Der volle Inhalt der QuelleLiu, Shu Lin, You Fu Tang, Ji Cheng Liu und Ying Hui Liu. „Research of Fault Feature Extraction Based on High Order Cyclic Statistics for Reciprocating Compressor Gas Valves“. Applied Mechanics and Materials 44-47 (Dezember 2010): 2094–98. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.2094.
Der volle Inhalt der QuelleKang, Wei, Guang Jian Chang und Xin Yong Qiao. „Approach to Diagnose Gear Tooth-Broken Fault Based on Web“. Advanced Materials Research 433-440 (Januar 2012): 2257–62. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.2257.
Der volle Inhalt der QuelleZhang, Dingcheng, Dejie Yu und Xing Li. „Optimal resonance-based signal sparse decomposition and its application to fault diagnosis of rotating machinery“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, Nr. 24 (26.11.2016): 4670–83. http://dx.doi.org/10.1177/0954406216671542.
Der volle Inhalt der QuellePapathanasopoulos, Dimitrios A., Konstantinos N. Giannousakis, Evangelos S. Dermatas und Epaminondas D. Mitronikas. „Vibration Monitoring for Position Sensor Fault Diagnosis in Brushless DC Motor Drives“. Energies 14, Nr. 8 (16.04.2021): 2248. http://dx.doi.org/10.3390/en14082248.
Der volle Inhalt der QuelleZeng, Wen Feng, Yu Min Tian, Bao Hui Zhu und Dong Li. „The Design of a Maintenance Simulation System for Lasers“. Advanced Materials Research 926-930 (Mai 2014): 1440–43. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.1440.
Der volle Inhalt der QuelleDissertationen zum Thema "Simulation of fault signals"
Hou, Junwei. „Concurrent fault simulation for mixed-signal circuits“. Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/15735.
Der volle Inhalt der QuelleWang, Xiaofeng. „Simulation models for rolling bearing vibration generation and fault detection via neural networks“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362159.
Der volle Inhalt der QuelleGomes, Alfred Vincent. „Alternate Test Generation for Detection of Parametric Faults“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5285.
Der volle Inhalt der QuelleDavari, Far Mehrdad. „Contribution to the fault diagnosis in photovoltaic systems“. Amiens, 2014. http://www.theses.fr/2014AMIE0117.
Der volle Inhalt der QuelleThe aim of this thesis was to develop methods for detecting faults in photovoltaic installations. An approach based on model and simulation to detect defects in the residential photovoltaic System (RPS) is proposed. A simplified hybridphotovoltaic panel used with MATLAB environment is developed and validated in this thesis. Its originality is that it runs in real time and it is flexible enough to simulate solar photovoltaic Systems with different scales, with or without bypass diodes and various technologies. Then a new technique for fault détection has been introduced. It consists of two main parts. A passive part, which will detect a fault by comparing the measured signals, and those obtained by the model. The active part is to analyze the different attributes to locale and identify the type of fault. Finally, the results obtained by simulation or practice of the method and the proposed techniques are satisfactory and open more perspectives in this area
Martínek, Marek. „Tvorba SW pro generování signálu simulující závady rotačních systémů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442837.
Der volle Inhalt der QuelleBhojwani, Soniya Naresh. „Simulation of Physiological Signals using Wavelets“. University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1193079604.
Der volle Inhalt der QuelleSmith, Jason. „A Sensor Fault Detection Simulation Tool“. Miami University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=miami1193282225.
Der volle Inhalt der QuelleWarshawsky, Avrum S. „Distributed fault simulation using vector set partitioning“. Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59903.
Der volle Inhalt der QuelleA framework for performing fault simulation in a distributed environment is developed based on the assumption that fault simulation of different vectors can be run independently on different processors. This can be done using any uniprocessor fault simulator and requires only a fairly simple and low bandwidth communication mechanism. This communication mechanism distributes the list of faults detected by each simulator to all other simulators so that the simulation can be controlled based on global criteria such as the fault coverage obtained by the distributed simulator, and the amount of work to be done by each processor is dynamically reduced through fault dropping and fault-free dropping based on the coverage obtained by all processors.
Finally, a distributed simulator is implemented using the above mechanism on a network of workstations using the uniprocessor fault simulator Tulip.
Kwong, Albert L. C. „Parallel fault simulation on the C.RAM architecture“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0001/MQ34387.pdf.
Der volle Inhalt der QuelleWang, Xiaolin. „Synchronous fault simulation by surrogate with exceptions“. Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184687.
Der volle Inhalt der QuelleBücher zum Thema "Simulation of fault signals"
Gardner, Floyd Martin. Simulation techniques: Models of communication signals and processes. New York: Wiley, 1997.
Den vollen Inhalt der Quelle findenKehil, D. Passive sonar signals simulation using frequency domain techniques. Birmingham: University of Birmingham, 1988.
Den vollen Inhalt der Quelle findenKnight, J. C. Second generation experiments in fault tolerant software. Charlottesville, Va: Dept. of Computer Science, School of Engineering and Applied Science, University of Virginia, 1987.
Den vollen Inhalt der Quelle findenSammis, Charles G., und Yehuda Ben-Zion. Mechanics, structure and evolution of fault zones. Basel: Birkhauser, 2010.
Den vollen Inhalt der Quelle findenPhilippe, Müllhaupt, und SpringerLink (Online service), Hrsg. Advances in the Theory of Control, Signals and Systems with Physical Modeling. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Den vollen Inhalt der Quelle findenLitt, John. Sensor fault detection and diagnosis simulation of a helicopter engine in an intelligent control framework. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenKuipers, Benjamin. Self-calibrating models for dynamic monitoring and diagnosis: Final report covering the period 1 February 1992 to 31 March 1995. Austin, Tex: University of Texas at Austin, 1996.
Den vollen Inhalt der Quelle findenBedrosian, Edward. Concept-level analytical procedures for loading nonprocessing communication satellites with nonantijam signals. Santa Monica, CA: Rand, 1996.
Den vollen Inhalt der Quelle findenInstitution of Engineering and Technology. Thermal Power Plant Simulation and Control. Stevenage: IET, 2003.
Den vollen Inhalt der Quelle findenRogers, A. M. Monte Carlo simulation of peak-acceleration attenuation using a finite-fault uniform-patch model: A parameter study. [Denver, CO]: Dept. of the Interior, U.S. Geological Survey, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Simulation of fault signals"
Huber, John P., und Mark W. Rosneck. „Fault Simulation“. In Successful ASIC Design the First Time Through, 129–43. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-7885-3_7.
Der volle Inhalt der QuelleUlrich, Ernst G., Vishwani D. Agrawal und Jack H. Arabian. „Concurrent Fault Simulation“. In Concurrent and Comparative Discrete Event Simulation, 57–62. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2738-1_4.
Der volle Inhalt der QuelleSantucci, Jean-François, Paul Bisgambiglia und Dominique Federici. „Behavioral Fault Simulation“. In Advanced Techniques for Embedded Systems Design and Test, 261–84. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-4419-4_11.
Der volle Inhalt der QuelleKrstić, Angela, und Kwang-Ting Cheng. „Delay Fault Simulation“. In Frontiers in Electronic Testing, 77–100. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5597-1_6.
Der volle Inhalt der QuelleWalker, Duncan Moore Henry. „Fault Analysis“. In Yield Simulation for Integrated Circuits, 51–85. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-1931-4_5.
Der volle Inhalt der QuelleKhare, Jitendra B., und Wojciech Maly. „Contamination-Defect-Fault (CDF) Simulation“. In From Contamination to Defects, Faults and Yield Loss, 37–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1377-9_3.
Der volle Inhalt der QuelleNavabi, Zainalabedin. „Fault Simulation Applications and Methods“. In Digital System Test and Testable Design, 103–42. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7548-5_4.
Der volle Inhalt der QuelleUlrich, Ernst G., Vishwani D. Agrawal und Jack H. Arabian. „Fault Simulation of Diagnostic Programs“. In Concurrent and Comparative Discrete Event Simulation, 95–108. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2738-1_8.
Der volle Inhalt der QuelleAzambuja, José Rodrigo, Fernanda Kastensmidt und Jürgen Becker. „Simulation Fault Injection Experimental Results“. In Hybrid Fault Tolerance Techniques to Detect Transient Faults in Embedded Processors, 63–68. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06340-9_5.
Der volle Inhalt der QuelleChibani, Kais, Adrien Facon, Sylvain Guilley, Damien Marion, Yves Mathieu, Laurent Sauvage, Youssef Souissi und Sofiane Takarabt. „Fault Analysis Assisted by Simulation“. In Automated Methods in Cryptographic Fault Analysis, 263–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11333-9_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Simulation of fault signals"
Dedoussis, V., K. Mathioudakis und K. D. Papailiou. „Numerical Simulation of Blade Fault Signatures From Unsteady Wall Pressure Signals“. In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-289.
Der volle Inhalt der QuelleBartelmus, Walter, und Radosław Zimroz. „Gearbox Systems Dynamic Modelling for Diagnostic Fault Detection“. In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/ptg-48080.
Der volle Inhalt der QuelleLeger, Gildas, und Antonio Gines. „Likelihood-sampling adaptive fault simulation“. In 2017 International Mixed Signals Testing Workshop (IMSTW). IEEE, 2017. http://dx.doi.org/10.1109/ims3tw.2017.7995200.
Der volle Inhalt der QuelleKorkealaakso, Pasi, Asko Rouvinen und Aki Mikkola. „Multibody Simulation Formulations in Fault Diagnosis of a Reel“. In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84923.
Der volle Inhalt der QuelleGangsar, Purushottam, und Rajiv Tiwari. „Analysis of Time, Frequency and Wavelet Based Features of Vibration and Current Signals for Fault Diagnosis of Induction Motors Using SVM“. In ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4774.
Der volle Inhalt der QuelleYang, J. G., K. Zhao, Y. Pan und X. D. Liu. „Research on the Simulation Method of Dynamic Response of High Voltage Circuit Breaker During Operation“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66357.
Der volle Inhalt der QuelleVenkataram, Nithin, Harish K. Bhagavan, Rahul M. Cadambi und Arun R. Rao. „Numerical Simulation and Experimental Validation of Frequency Based Fault Detection and Localization in a Planetary Gearbox Under Dynamic Condition“. In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2523.
Der volle Inhalt der QuelleParky, Joonsung, Srinadh Madhavapeddiz, Alessandro Paglieri, Chris Barrz und Jacob A. Abrahamy. „Defect-based analog fault coverage analysis using mixed-mode fault simulation“. In 2009 IEEE 15th International Mixed-Signals, Sensors, and Systems Test Workshop (IMS3TW). IEEE, 2009. http://dx.doi.org/10.1109/ims3tw.2009.5158688.
Der volle Inhalt der QuelleHou, Chin-Che, und Min-Chun Pan. „Feature Extraction Based on Teager-Kaiser Energy Operation and Envelope Spectra for Fault Detection of a Reciprocating Compressor“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24550.
Der volle Inhalt der QuelleWang, Chongyu, Di Zhang und Yonghui Xie. „Research on Fault Diagnosis of Steam Turbine Rotor Unbalance and Parallel Misalignment Based on Numerical Simulation and Convolutional Neural Network“. In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60247.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Simulation of fault signals"
Venkataraman, Srikanth, W. K. Fuchs und Janak H. Patel. Diagnostic Simulation of Sequential Circuits Using Fault Sampling. Fort Belvoir, VA: Defense Technical Information Center, Januar 1998. http://dx.doi.org/10.21236/ada339323.
Der volle Inhalt der QuelleJohnson, Barry W., D. T. Smith und Todd A. DeLong. VHDL Fault Simulation and Automatic Test Pattern Generation Requirements Document. Fort Belvoir, VA: Defense Technical Information Center, Januar 1996. http://dx.doi.org/10.21236/ada304358.
Der volle Inhalt der QuelleDRAKE, RICHARD R., und RANDALL M. SUMMERS. An Exploration in Implementing Fault Tolerance in Scientific Simulation Application Software. Office of Scientific and Technical Information (OSTI), Mai 2003. http://dx.doi.org/10.2172/811162.
Der volle Inhalt der QuelleSchein, Jeffery, und Steven Bushby. A simulation study of a hierarchical, rule-based method for system-level fault detection and diagnostics in HVAC systems. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7216.
Der volle Inhalt der QuelleJuanes, Ruben. Enhanced Simulation Tools to Improve Predictions and Performance of Geologic Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and Trapping. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1345666.
Der volle Inhalt der QuellePitarka, Arben. Multi Segment Fault Rupture Modeling and Strong Ground Motion Simulation Using Irikura, Japan Recipe: Implementation in the in SCEC BB Platform. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1544495.
Der volle Inhalt der QuelleNafakh, Abdullah Jalal, Yunchang Zhang, Sarah Hubbard und Jon D. Fricker. Assessment of a Displaced Pedestrian Crossing for Multilane Arterials. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317318.
Der volle Inhalt der QuelleBobashev, Georgiy, John Holloway, Eric Solano und Boris Gutkin. A Control Theory Model of Smoking. RTI Press, Juni 2017. http://dx.doi.org/10.3768/rtipress.2017.op.0040.1706.
Der volle Inhalt der Quelle