Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Simulation, modelling, and programming of mechatronics systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Simulation, modelling, and programming of mechatronics systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Simulation, modelling, and programming of mechatronics systems"
Malik, M. Afzaal, und Saheeb A. Kayani. „Verifying experiment for automated design of mechatronic systems using Bond-Graph modelling and simulation and genetic programming“. International Journal of Computer Applications in Technology 32, Nr. 3 (2008): 173. http://dx.doi.org/10.1504/ijcat.2008.020952.
Der volle Inhalt der QuelleŽemla, Filip, Ján Cigánek, Danica Rosinová, Erik Kučera und Oto Haffner. „Complex Positioning System for the Control and Visualization of Photovoltaic Systems“. Energies 16, Nr. 10 (09.05.2023): 4001. http://dx.doi.org/10.3390/en16104001.
Der volle Inhalt der QuelleGwiazda, A., W. Banaś, A. Sękala, G. Ćwikła, M. Sokół und K. Foit. „Complex technical systems modelling and their mechatronics function simulation“. IOP Conference Series: Materials Science and Engineering 400 (18.09.2018): 042028. http://dx.doi.org/10.1088/1757-899x/400/4/042028.
Der volle Inhalt der QuelleSekala, A., G. Kost, W. Banas, A. Gwiazda und C. Grabowik. „Modelling and simulation of robotic production systems“. Journal of Physics: Conference Series 2198, Nr. 1 (01.05.2022): 012065. http://dx.doi.org/10.1088/1742-6596/2198/1/012065.
Der volle Inhalt der QuelleSenthilnathan, K. „Development and Evaluation of Control System in Mechatronics – A Systematic Survey“. Journal of Electrical Engineering and Automation 4, Nr. 2 (18.07.2022): 109–19. http://dx.doi.org/10.36548/jeea.2022.2.005.
Der volle Inhalt der QuelleVerma, Deepak. „Modelling and Simulation of Mechatronic Systems for Predictive Performance Analysis“. Mathematical Statistician and Engineering Applications 70, Nr. 1 (31.01.2021): 455–63. http://dx.doi.org/10.17762/msea.v70i1.2497.
Der volle Inhalt der QuelleKim, Eungab, Mark P. Van Oyen und Maria Rieders. „General dynamic programming algorithms applied to polling systems“. Communications in Statistics. Stochastic Models 14, Nr. 5 (Januar 1998): 1197–221. http://dx.doi.org/10.1080/15326349808807520.
Der volle Inhalt der QuelleAlzbutas, R., und V. Janilionis. „THE SIMULATION OF DYNAMIC SYSTEMS USING COMBINED MODELLING“. Mathematical Modelling and Analysis 5, Nr. 1 (15.12.2000): 7–17. http://dx.doi.org/10.3846/13926292.2000.9637123.
Der volle Inhalt der QuelleMadhevan, B., R. Sakkaravarthi, G. Mandeep Singh, R. Diya und Durgesh Kumar Jha. „Modelling, Simulation and Mechatronics Design of a Wireless Automatic Fire Fighting Surveillance Robot“. Defence Science Journal 67, Nr. 5 (19.09.2017): 572. http://dx.doi.org/10.14429/dsj.67.10237.
Der volle Inhalt der QuelleSoshko, Oksana. „Model-Based Supply Chain Management“. Scientific Journal of Riga Technical University. Computer Sciences 45, Nr. 1 (01.01.2011): 116–22. http://dx.doi.org/10.2478/v10143-011-0052-z.
Der volle Inhalt der QuelleDissertationen zum Thema "Simulation, modelling, and programming of mechatronics systems"
Lavery, Eamonn. „Object oriented modelling and simulation of manufacturing systems“. Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361254.
Der volle Inhalt der QuelleDi, Domenica Nico. „Stochastic programming and scenario generation : decision modelling simulation and information systems perspective“. Thesis, Brunel University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415936.
Der volle Inhalt der QuelleGebremedhin, Mahder. „Automatic and Explicit Parallelization Approaches for Mathematical Simulation Models“. Licentiate thesis, Linköpings universitet, Programvara och system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-117346.
Der volle Inhalt der QuelleThe series name Linköping Studies in Science and Technology Licentiate Thesis is incorrect. The correct series name is Linköping Studies in Science and Technology Thesis.
Riederer, Peter. „Thermal room modelling adapted to the test of HVAC control systems“. Doctoral thesis, [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=967121663.
Der volle Inhalt der QuelleRiederer, Peter. „Thermal room modelling adapted to the test of HVAC control systems“. Doctoral thesis, Technische Universität Dresden, 2001. https://tud.qucosa.de/id/qucosa%3A24191.
Der volle Inhalt der QuelleAoun, Nadine. „Modeling and flexible predictive control of buildings space-heating demand in district heating systems“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC104.
Der volle Inhalt der QuelleIn District Heating Systems (DHSs), buildings Space-Heating (SH) demand management conventionally relies on a heating curve: when the outdoor temperature drops, the internal SH system supply water temperature is raised. This control mode, referred to as Weather-Compensation Control (WCC), offers widely recognized assets in terms of simplicity and robustness. However, WCC does not account for the building thermal inertia, and consequently, it does not allow modulation of its demand. SH demand modulation is the control action of strategically altering the indoor thermal comfort conditions within an energetic and/or economic optimization framework. It is a key measure in flexible demand control strategies, which seek loads shifting and peaks shaving to allow sustainable commitment of energy resources in favour of renewable power penetration and waste heat recovery.The work presented in this thesis aims at developing a flexible Model Predictive Control (MPC) strategy for SH demand, applicable at large scale in DHSs.Firstly, a thermal dynamic simulator of a residential building with a radiator SH circuit connected to a DHS substation is developed. It allows the definition of multiple case study buildings, well-representative of the french residential stock, and constitutes the virtual experimental environment for our research. Then, a methodology to obtain a control-oriented Reduced-Order Model (ROM) for the building and its SH system is proposed. It starts by defining the ROM structure based on physical knowledge, and proceeds to parameters identification by meta-heuristic optimization using data generated by the simulator. The parametric identification approach evaluates the possibility of carrying out this task by relying solely on data available at the substation level, refraining from using indoor temperature measurements, personal data assumed to be unavailable at large scale for technical, economic and legal reasons. Finally, MPC is implemented to schedule the SH supply water temperature as function of weather forecasts and energy price variations. The flexible controller is designed to solve a constrained linear optimization problem according to the receding horizon principle. It embeds the linearized ROM equations within the problem formulation and makes an optimal trade-off between energy consumption costs and thermal discomfort, the degree of flexibility to modulate SH demand being defined through dedicated tuning parameters
Bücher zum Thema "Simulation, modelling, and programming of mechatronics systems"
Damic, Vjekoslav. Mechatronics by bond graphs: An object-oriented approach to modelling and simulation. Berlin: Springer, 2003.
Den vollen Inhalt der Quelle findenPooch, Udo W. Discrete event simulation: A practical approach. Boca Raton: CRC Press, 1993.
Den vollen Inhalt der Quelle findenSchetzen, Martin. Discrete systems laboratory using MATLAB. Australia: Brooks/Cole, 2000.
Den vollen Inhalt der Quelle findenKarnopp, Dean. System dynamics: A unified approach. 2. Aufl. New York: Wiley, 1990.
Den vollen Inhalt der Quelle findenPelz, Georg. Mechatronic Systems: Modelling and Simulation with HDLs. Wiley & Sons, Incorporated, John, 2005.
Den vollen Inhalt der Quelle findenMontgomery, John, und Vjekoslav Damic. Mechatronics by Bond Graphs: An Object-Oriented Approach to Modelling and Simulation. Springer, 2016.
Den vollen Inhalt der Quelle findenMontgomery, John, und Vjekoslav Damic. Mechatronics by Bond Graphs: An Object-Oriented Approach to Modelling and Simulation. Springer London, Limited, 2016.
Den vollen Inhalt der Quelle findenMontgomery, John, und Vjekoslav Damic. Mechatronics by Bond Graphs: An Object-Oriented Approach to Modelling and Simulation. Springer, 2018.
Den vollen Inhalt der Quelle findenArtificial Intelligence, Expert Systems and Languages in Modelling and Simulation. Elsevier, 1988.
Den vollen Inhalt der Quelle finden(Editor), M. L. Brodie, J. Mylopoulos (Editor) und J. W. Schmidt (Editor), Hrsg. On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Programming Languages (Topics in Information Systems). Springer, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Simulation, modelling, and programming of mechatronics systems"
Brezina, T., J. Vetiska, Z. Hadas und L. Brezina. „Simulation Modelling and Control of Mechatronic Systems with Flexible Parts“. In Mechatronics, 569–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23244-2_69.
Der volle Inhalt der QuelleEnge, Olaf, Gerald Kielau und Peter Maißer. „Modelling and Simulation of Discrete Electromechanical Systems“. In Proceedings of the Third Conference on Mechatronics and Robotics, 302–18. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-91170-4_23.
Der volle Inhalt der QuelleGranda, Jose J. „Automating the Process for Modeling and Simulation of Mechatronics Systems“. In Bond Graph Modelling of Engineering Systems, 385–430. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9368-7_11.
Der volle Inhalt der QuelleMunteanu, Iulian Sorin, Liviu Marian Ungureanu, Cosmina-Constantina Caraiman, Ramona-Gabriela Crișan, Elisabeta Niculae und Badea Sorin. „Modelling and Simulation of Some Mechatronics Assembly Realized on Arduino Uno Board, Through the Tinkercad Application“. In Lecture Notes in Networks and Systems, 374–84. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40628-7_31.
Der volle Inhalt der QuelleAsgari, Hamid, XiaoQi Chen und Raazesh Sainudiin. „Modelling and Simulation Approaches for Gas Turbine System Optimization“. In Engineering Creative Design in Robotics and Mechatronics, 240–64. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-4225-6.ch014.
Der volle Inhalt der QuelleNishad, Dinesh Kumar, A. N. Tiwari und Saifullah Khalid. „Adaptive Control Algorithms for Shunt Active Power Filters in Aircraft Systems“. In Advances in Mechatronics and Mechanical Engineering, 119–40. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-5797-2.ch004.
Der volle Inhalt der QuelleGuarnierI, F., S. Olampi und A. Napoli. „Toward a "Virtual Laboratory" to Support Forest Fire Behaviour Modelling and Metrology“. In Environmental Information Systems in Industry and Public Administration, 271–81. IGI Global, 2001. http://dx.doi.org/10.4018/978-1-930708-02-0.ch018.
Der volle Inhalt der QuelleSulakhiya, Kunjbihari, Rishi Paliwal, Anglina Kisku, Madhavi Sahu, Shivam Aditya, Pranay Soni und Saurabh Maru. „Experimental Tools as an “Alternative to Animal Research” in Pharmacology“. In Software and Programming Tools in Pharmaceutical Research, 170–206. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815223019124010010.
Der volle Inhalt der QuelleBirtic, Martin, Pablo Morilla Cabello, Ángel Muñoz Rocha und Anna Syberfeldt. „Exploring the Synergies of Modularization, Interface Standardization, and Service-Orientation in Production System Simulation“. In Advances in Transdisciplinary Engineering. IOS Press, 2024. http://dx.doi.org/10.3233/atde240164.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Simulation, modelling, and programming of mechatronics systems"
Naebi, Ahmad, Farhad Khalegi, Farhood Hosseinpour, Ali Ghaleban Zanjanab, Hamed Khoshravan, Aghil Esmaeili Kelishomi und Bahram Rahmatdoustbeilankouh. „A New Flowchart and Programming Technique Using Bond Graph for Mechatronic Systems“. In 2011 UkSim 13th International Conference on Computer Modelling and Simulation (UKSim). IEEE, 2011. http://dx.doi.org/10.1109/uksim.2011.52.
Der volle Inhalt der QuelleEnikov, Eniko T., Qiuchen Zhang und Lucas Creery. „System Identification and Controller Design of Propeller Driven Pendulum (Bi-Copter)“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-109757.
Der volle Inhalt der QuellePeleteiro, Ana M., Juan C. Burguillo, Zuzana Oplatková und Ivan Zelinka. „EPMAS: Evolutionary Programming Multi-Agent Systems“. In 24th European Conference on Modelling and Simulation. ECMS, 2010. http://dx.doi.org/10.7148/2010-0027-0033.
Der volle Inhalt der QuelleAbraham, Ajith, Crina Grosan und Vaclav Snasel. „Programming Risk Assessment Models for Online Security Evaluation Systems“. In 2009 11th International Conference on Computer Modelling and Simulation. IEEE, 2009. http://dx.doi.org/10.1109/uksim.2009.75.
Der volle Inhalt der QuelleSenkerik, Roman, Zuzana Kominkova Oplatkova, Ivan Zelinka und Michal Pluhacek. „Analytic Programming In The Task Of Evolutionary Synthesis Of The Robust Controller For Selected Discrete Chaotic Systems“. In 27th Conference on Modelling and Simulation. ECMS, 2013. http://dx.doi.org/10.7148/2013-0398.
Der volle Inhalt der QuelleJurenoks, Vitalijs, Vladimirs Jansons und Konstantins Didenko. „Modelling of Stability of Economic Systems Using Benchmarking and Dynamic Programming“. In Tenth International Conference on Computer Modeling and Simulation (uksim 2008). IEEE, 2008. http://dx.doi.org/10.1109/uksim.2008.96.
Der volle Inhalt der QuelleGrossschmidt, Gunnar, Mait Harf und Taavi Sallaste. „Modelling and Simulation of Fluid Power Systems in Object-Oriented Programming Environment“. In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95387.
Der volle Inhalt der QuelleNaebi, Ahmad, Somayeh Paki Khatibi, Nasser Yousefzadeh Khiabani und Jahangir Kheyrihassankandi. „A New Programming Language for Microcontroller Using Bond Graph“. In 2012 3rd International Conference on Intelligent Systems, Modelling and Simulation (ISMS). IEEE, 2012. http://dx.doi.org/10.1109/isms.2012.84.
Der volle Inhalt der QuelleClark, Ronald, Willem Cronje und Michael Antonie van Wyk. „Design Optimization of a Hybrid Energy System through Fast Convex Programming“. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (ISMS). IEEE, 2014. http://dx.doi.org/10.1109/isms.2014.78.
Der volle Inhalt der QuelleQichen Wang und C. Phillips. „Cooperative Path Management for Mobile Systems Based on Adaptive Dynamic Programming“. In 2013 UKSim 15th International Conference on Computer Modelling and Simulation (UKSim 2013). IEEE, 2013. http://dx.doi.org/10.1109/uksim.2013.37.
Der volle Inhalt der Quelle