Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Simulated body liquid“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Simulated body liquid" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Simulated body liquid"
Xu, Huan, Zhi Qiang Li, He Dong, Ya Chao Di und Yang Yang Tang. „Numerical Investigation of the Gas-Liquid Two-Phase Flow around the Square-Section Cylinder Using a Multi-Scale Turbulence Model“. Applied Mechanics and Materials 444-445 (Oktober 2013): 437–45. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.437.
Der volle Inhalt der QuelleYan, Y. Y., Y. Q. Zu, L. Q. Ren und J. Q. Li. „Numerical modelling of electro-osmotically driven flow within the microthin liquid layer near an earthworm surface - a biomimetic approach“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, Nr. 10 (30.09.2007): 1201–10. http://dx.doi.org/10.1243/09544062jmes518.
Der volle Inhalt der QuelleKeil, Claudia, Christopher Hübner, Constanze Richter, Sandy Lier, Lars Barthel, Vera Meyer, Raman Subrahmanyam, Pavel Gurikov, Irina Smirnova und Hajo Haase. „Ca-Zn-Ag Alginate Aerogels for Wound Healing Applications: Swelling Behavior in Simulated Human Body Fluids and Effect on Macrophages“. Polymers 12, Nr. 11 (18.11.2020): 2741. http://dx.doi.org/10.3390/polym12112741.
Der volle Inhalt der QuelleShahlori, R., G. I. N. Waterhouse, T. A. Darwish, A. R. J. Nelson und D. J. McGillivray. „Counting crystal clusters – a neutron reflectometry study of calcium phosphate nano-cluster adsorption at the air–liquid Interface“. CrystEngComm 19, Nr. 38 (2017): 5716–20. http://dx.doi.org/10.1039/c7ce01303e.
Der volle Inhalt der QuelleKupershtokh, A. L., E. V. Ermanyuk und N. V. Gavrilov. „The Rupture of Thin Liquid Films Placed on Solid and Liquid Substrates in Gravity Body Forces“. Communications in Computational Physics 17, Nr. 5 (Mai 2015): 1301–19. http://dx.doi.org/10.4208/cicp.2014.m340.
Der volle Inhalt der QuelleZhang, Y. F., B. Hinton, G. Wallace, X. Liu und M. Forsyth. „On corrosion behaviour of magnesium alloy AZ31 in simulated body fluids and influence of ionic liquid pretreatments“. Corrosion Engineering, Science and Technology 47, Nr. 5 (August 2012): 374–82. http://dx.doi.org/10.1179/1743278212y.0000000032.
Der volle Inhalt der QuelleOsmanlliu, MDCM, FRCPC, Esli, Ilana Bank, MDCM, FRCPC, FAAP, Elene Khalil, MDCM, FRCPC, FAAP, Peter Nugus, PhD, Margaret Ruddy, RN, BSc Nursing, MMgmt und Meredith Young, PhD. „Decontamination effectiveness and the necessity of innovation in a large-scale disaster simulation“. American Journal of Disaster Medicine 16, Nr. 1 (01.01.2021): 67–73. http://dx.doi.org/10.5055/ajdm.2021.0388.
Der volle Inhalt der QuelleBadr, Ahmed Noah, Karolina Gromadzka, Mohamed Gamal Shehata, Kinga Stuper-Szablewska, Kinga Drzewiecka und Adel Gabr Abdel-Razek. „Prospective antimycotoxigenic action of wild Opuntia ficus-indica by-products“. Czech Journal of Food Sciences 38, No. 5 (30.10.2020): 308–14. http://dx.doi.org/10.17221/11/2020-cjfs.
Der volle Inhalt der QuelleFranco, C. M. R., A. G. Barbosa de Lima, J. V. Silva und A. G. Nunes. „Applying Liquid Diffusion Model for Continuous Drying of Rough Rice in Fixed Bed“. Defect and Diffusion Forum 369 (Juli 2016): 152–56. http://dx.doi.org/10.4028/www.scientific.net/ddf.369.152.
Der volle Inhalt der QuelleNguyen, Van Thuan, und Chang Won Jung. „Impact of Dielectric Constant on Embedded Antenna Efficiency“. International Journal of Antennas and Propagation 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/758139.
Der volle Inhalt der QuelleDissertationen zum Thema "Simulated body liquid"
Hrabovský, Jan. „Biodegradabilní kostní implantáty na bázi železa“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442443.
Der volle Inhalt der QuelleLiu, Jiayang. „Electrochemical behaviors of micro-arc oxidation coated magnesium alloy“. Thesis, 2014. http://hdl.handle.net/1805/5966.
Der volle Inhalt der QuelleIn recent years, magnesium alloys, due to their high strength and biocompatibility, have attracted significant interest in medical applications, such as cardiovascular stents, orthopedic implants, and devices. To overcome the high corrosion rate of magnesium alloys, coatings have been developed on the alloy surface. Most coating methods, such as anodic oxidation, polymer coating and chemical conversion coating, cannot produce satisfactory coating to be used in human body environment. Recent studies demonstrate that micro-arc oxidation (MAO) technique can produce hard, dense, wear-resistant and well-adherent oxide coatings for light metals such as aluminum, magnesium, and titanium. Though there are many previous studies, the understanding of processing conditions on coating performance remains elusive. Moreover, previous tests were done in simulated body fluid. No test has been done in a cell culture medium, which is much closer to human body environment than simulated body fluid. In this study, the effect of MAO processing time (1 minute, 5 minutes, 15 minutes, and 20 minutes) on the electrochemical behaviors of the coating in both conventional simulated body fluid and a cell culture medium has been investigated. Additionally a new electrolyte (12 g/L Na2SiO3, 4 g/L NaF and 4 ml/L C3H8O3) has been used in the MAO coating process. Electrochemical behaviors were measured by performing potentiodynamic polarization and electrochemical impedance spectroscopy tests. In addition to the tests in simulated body fluid, the MAO-coated and uncoated samples were immersed in a cell culture medium to investigate the corrosion behaviors and compare the difference in these two kinds of media. The results show that in the immersion tests in conventional simulated body fluid, the 20-minute MAO coated sample has the best resistance to corrosion due to the largest coating thickness. In contrast, in the cell culture medium, all MAO coated samples demonstrate a similar high corrosion resistance behavior, independent of MAO processing time. This is probably due to the organic passive layers formed on the coating surfaces. Additionally, a preliminary finite element model has been developed to simulate the immersion test of magnesium alloy in simulated body fluid. Comparison between the predicted corrosion current density and experimental data is discussed.
Konferenzberichte zum Thema "Simulated body liquid"
Yamada, Toru, Yutaka Asako, Mohammad Faghri und Bengt Sundén. „Effect of the Surface Tension of Liquid-Solid Interface on Liquid Flow in Parallel-Plate Sub-Micron Channels Using Multi-Body Dissipative Particle Dynamics“. In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73054.
Der volle Inhalt der QuellePassandideh Fard, Mohammad, Mohammad Reza Mahpeykar, Sajad Pooyan und Mortaza Rahimzadeh. „Numerical Simulation of Electrostatic Atomization in Spindle Mode“. In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30734.
Der volle Inhalt der QuelleKhalili, Fardin, Federico De Paoli und Rasim Guldiken. „Impact Resistance of Liquid Body Armor Utilizing Shear Thickening Fluids: A Computational Study“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53376.
Der volle Inhalt der QuellePu, Z., O. W. Dillon, I. S. Jawahir und D. A. Puleo. „Microstructural Changes of AZ31 Magnesium Alloys Induced by Cryogenic Machining and Its Influence on Corrosion Resistance in Simulated Body Fluid for Biomedical Applications“. In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34234.
Der volle Inhalt der QuelleNishio, Yu, Keiji Niwa und Takanobu Ogawa. „Numerical Simulation of a Pouring Flow From a Beverage Can“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5308.
Der volle Inhalt der QuelleIshii, Eiji, Yoshihito Yasukawa, Kazuki Yoshimura und Kiyotaka Ogura. „Simulation of Coarse Droplet and Liquid Column Formed Around Nozzle Outlets due to Valve Wobble of a GDI Injector“. In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3509.
Der volle Inhalt der QuelleCazzoli, Giulio, Claudio Forte, Cristiano Vitali, Piero Pelloni und Gian Marco Bianchi. „Modeling of Wall Film Formed by Impinging Spray Using a Fully Explicit Integration Method“. In ASME 2005 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ices2005-1063.
Der volle Inhalt der QuelleHazrati Ashtiani, Iman, Subhash Rakheja, A. K. W. Ahmed und Jimin Zhang. „Hunting Analysis of a Partially-Filled Railway Tank Car“. In 2015 Joint Rail Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/jrc2015-5631.
Der volle Inhalt der QuelleKamin, Manu, und Prashant Khare. „Liquid Jet in Crossflow: Effect of Momentum Flux Ratio on Spray and Vaporization Characteristics“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91972.
Der volle Inhalt der QuelleFunazaki, K., M. Yokota und S. Yamawaki. „The Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body“. In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-183.
Der volle Inhalt der Quelle