Auswahl der wissenschaftlichen Literatur zum Thema „Simplicial complexes and polytopes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Simplicial complexes and polytopes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Simplicial complexes and polytopes"

1

Bruns, W., und J. Gubeladze. „Combinatorial Invariance of Stanley–Reisner Rings“. gmj 3, Nr. 4 (August 1996): 315–18. http://dx.doi.org/10.1515/gmj.1996.315.

Der volle Inhalt der Quelle
Annotation:
Abstract In this short note we show that Stanley–Reisner rings of simplicial complexes, which have had a “dramatic application” in combinatorics [Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publications, 1992, p. 41], possess a rigidity property in the sense that they determine their underlying simplicial complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Erokhovets, N. Yu. „Buchstaber invariant theory of simplicial complexes and convex polytopes“. Proceedings of the Steklov Institute of Mathematics 286, Nr. 1 (Oktober 2014): 128–87. http://dx.doi.org/10.1134/s008154381406008x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pournin, Lionel. „Lifting simplicial complexes to the boundary of convex polytopes“. Discrete Mathematics 312, Nr. 19 (Oktober 2012): 2849–62. http://dx.doi.org/10.1016/j.disc.2012.06.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Joswig, Michael. „Projectivities in simplicial complexes and colorings of simple polytopes“. Mathematische Zeitschrift 240, Nr. 2 (01.06.2002): 243–59. http://dx.doi.org/10.1007/s002090100381.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Deza, Michel, und Mathieu Dutour Sikirić. „Generalized cut and metric polytopes of graphs and simplicial complexes“. Optimization Letters 14, Nr. 2 (13.11.2018): 273–89. http://dx.doi.org/10.1007/s11590-018-1358-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ayzenberg, A. A. „Substitutions of polytopes and of simplicial complexes, and multigraded betti numbers“. Transactions of the Moscow Mathematical Society 74 (09.04.2014): 175–202. http://dx.doi.org/10.1090/s0077-1554-2014-00224-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Santos, Francisco. „Recent progress on the combinatorial diameter of polytopes and simplicial complexes“. TOP 21, Nr. 3 (Oktober 2013): 426–60. http://dx.doi.org/10.1007/s11750-013-0295-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bahri, Anthony, Soumen Sarkar und Jongbaek Song. „Infinite families of equivariantly formal toric orbifolds“. Forum Mathematicum 31, Nr. 2 (01.03.2019): 283–301. http://dx.doi.org/10.1515/forum-2018-0019.

Der volle Inhalt der Quelle
Annotation:
AbstractThe simplicial wedge construction on simplicial complexes and simple polytopes has been used by a variety of authors to study toric and related spaces, including non-singular toric varieties, toric manifolds, intersections of quadrics and more generally, polyhedral products. In this paper we extend the analysis to include toric orbifolds. Our main results yield infinite families of toric orbifolds, derived from a given one, whose integral cohomology is free of torsion and is concentrated in even degrees, a property which might be termed integrally equivariantly formal. In all cases, it is possible to give a description of the cohomology ring and to relate it to the cohomology of the original orbifold.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Beben, Piotr, und Jelena Grbić. „LS-category of moment-angle manifolds and higher order Massey products“. Forum Mathematicum 33, Nr. 5 (26.08.2021): 1179–205. http://dx.doi.org/10.1515/forum-2021-0015.

Der volle Inhalt der Quelle
Annotation:
Abstract Using the combinatorics of the underlying simplicial complex K, we give various upper and lower bounds for the Lusternik–Schnirelmann (LS) category of moment-angle complexes 𝒵 K {\mathcal{Z}_{K}} . We describe families of simplicial complexes and combinatorial operations which allow for a systematic description of the LS-category. In particular, we characterize the LS-category of moment-angle complexes 𝒵 K {\mathcal{Z}_{K}} over triangulated d-manifolds K for d ≤ 2 {d\leq 2} , as well as higher-dimensional spheres built up via connected sum, join, and vertex doubling operations. We show that the LS-category closely relates to vanishing of Massey products in H * ⁢ ( 𝒵 K ) {H^{*}(\mathcal{Z}_{K})} , and through this connection we describe first structural properties of Massey products in moment-angle manifolds. Some of the further applications include calculations of the LS-category and the description of conditions for vanishing of Massey products for moment-angle manifolds over fullerenes, Pogorelov polytopes and k-neighborly complexes, which double as important examples of hyperbolic manifolds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

De Loera, Jesús A. „Comments on: Recent progress on the combinatorial diameter of polytopes and simplicial complexes“. TOP 21, Nr. 3 (Oktober 2013): 474–81. http://dx.doi.org/10.1007/s11750-013-0291-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Simplicial complexes and polytopes"

1

Cartier, Noémie. „Lattice properties of acyclic pipe dreams“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG065.

Der volle Inhalt der Quelle
Annotation:
Cette thèse s'inscrit dans le domaine de la combinatoire algébrique. Certains algorithmes de tri peuvent être décrits par des diagrammes appelés réseaux de tri, et l'exécution de ces algorithmes sur des permutations se traduit alors par des arrangements de courbes sur ces réseaux. Ces arrangements donnent des modèles pour des structures combinatoires classiques : par exemple, le treillis de Tamari, dont les relations de couverture sont les rotations sur les arbres binaires, et qui est un quotient bien connu de l'ordre faible sur les permutations. Les complexes de sous-mots généralisent les réseaux de tris et les arrangements de courbes aux groupes de Coxeter. Ils ont des liens profonds en algèbre et géométrie, notamment dans le calcul de Schubert, l'étude des variétés grassmanniennes et la théorie des algèbres amassées. Cette thèse s'intéresse aux structures de treillis sur certains complexes de sous-mots, généralisant les treillis de Tamari. Plus précisément, elle étudie la relation définie par les extensions linéaires des facettes d'un complexe de sous-mot. Dans un premier lieu, nous nous intéressons aux complexes de sous-mots définis sur un mot triangulaire du groupe symétrique, que nous représentons par des arrangements de tuyaux triangulaires. Nous prouvons alors que cette relation définit un quotient de treillis d'un intervalle de l'ordre faible ; par ailleurs, nous pouvons également utiliser cette relation pour définir un morphisme de treillis de cet intervalle au graphe des flips du complexe de sous-mots restreint à certaines de ses facettes. Dans un second lieu, nous étendons notre étude aux complexes de sous-mots définis sur les mots alternants du groupe symétrique. Nous montrons que cette même relation définit également un quotient de treillis ; en revanche, le morphisme associé n'a plus pour image le graphe des flips, mais le squelette du polyhèdre de brique, un objet défini sur les complexes de sous-mots pour étudier des réalisations du multi-associahèdre. Enfin, nous discutons des possibles extensions de ces résultats aux groupes de Coxeter finis, ainsi que de leurs applications pour généraliser certains objets définis en type A comme les treillis de nu-Tamari
This thesis comes within the scope of algebraic combinatorics. Some sorting algorithms can be described by diagrams called sorting networks, and the execution of the algorithms on input permutations translates to arrangements of curves on the networks. These arrangements modelize some classical combinatorial structures: for example, the Tamari lattice, whose cover relations are the rotations on binary trees, and which is a well-known quotient of the weak order on permutations. Subword complexes generalize sorting network and arrangements of curves to Coxeter groups. They have deep connections in algebra and geometry, in particular in Schubert calculus, in the study of grassmannian varieties, and in the theory of cluster algebras. This thesis focuses on lattice structures on some subword complexes, generalizing Tamari lattices. More precisely, it studies the relation defined by linear extensions of the facets of a subword complex. At first we focus on subword complexes defined on a triangular word of the symmetric group, which we represent with triangular pipe dreams. We prove that this relation defines a lattice quotient of a weak order interval; moreover, we can also use this relation to define a lattice morphism from this interval to the restriction of the flip graph of the subword complex to some of its facets. Secondly, we extent our study to subword complexes defined on alternating words of the symmetric group. We prove that this same relation also defines a lattice quotient; however, the image of the associated morphism is no longer the flip graph, but the skeleton of the brick polyhedron, an object defines on subword complexes to study realizations of the multiassociahedron. Finally, we discuss possible extensions of these results to finite Coxeter groups, as well as their applications to generalize some objects defined in type A such as nu-Tamari lattices
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jonsson, Jakob. „Simplicial Complexes of Graphs“. Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jonsson, Jakob. „Simplicial complexes of graphs /“. Berlin [u.a.] : Springer, 2008. http://dx.doi.org/10.1007/978-3-540-75858-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mirmohades, Djalal. „Simplicial Structure on Complexes“. Licentiate thesis, Uppsala universitet, Algebra och geometri, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-221410.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Zhihan. „Random walk on simplicial complexes“. Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM010.

Der volle Inhalt der Quelle
Annotation:
La notion de laplacien d’un graphe peut être généralisée aux complexes simpliciaux et aux hypergraphes. Cette notion contient des informations sur la topologie de ces structures. Dans la première partie de cette thèse,nous définissons une nouvelle chaîne de Markov sur les complexes simpliciaux. Pour un degré donné k de simplexes, l’espace d’états n’est pas les k-simplexes comme dans les articles précédents sur ce sujet mais plutôt l’ensemble des k-chaines ou k-co-chaines. Ce nouveau cadre est la généralisation naturelle sur les chaînes de Markov canoniques sur des graphes. Nous montrons que le générateur de notre chaîne de Markov est lié au Laplacien supérieur défini dans le contexte de la topologie algébrique pour structure discrète. Nous établissons plusieurs propriétés clés de ce nouveau procédé. Nous montrons que lorsque les complexes simpliciaux examinés sont une séquence de triangulation du tore plat, les chaînes de Markov tendent vers une forme différentielle valorisée processus continu.Dans la deuxième partie de cette thèse, nous explorons quelques applications de la marche aléatoire, i.e. la détection de trous basée sur la marche aléatoire et les noyaux complexes simpliciaux. Pour la détection de trous basée sur la marche aléatoire, nous introduisons un algorithme pour faire des simulations effectuées pour la marche aléatoire à valeur cyclique (k = 1) sur un complexe simplicial avec trous. Pour les noyaux de complexes simpliciaux, nous étendons la définition des noyaux de graphes basés sur la marche aléatoire afin de mesurer la similitude entre deux complexes simpliciaux
The notion of Laplacian of a graph can be generalized to simplicial complexes and hypergraphs. This notion contains information on the topology of these structures. In the first part of this thesis, we define a new Markov chain on simplicial complexes. For a given degree k of simplices, the state space is not thek-simplices as in previous papers about this subject but rather the set of k-chains or k-cochains.This new framework is the natural generalization on the canonical Markov chains on graphs.We show that the generator of our Markov chainis related to the upper Laplacian defined in the context of algebraic topology for discrete structure. We establish several key properties of this new process. We show that when the simplicial complexes under scrutiny are a sequence of ever refining triangulation of the flat torus, the Markov chains tend to a differential form valued continuous process.In the second part of this thesis, we explore some applications of the random walk, i.e., random walk based hole detection and simplicial complexes kernels. For the random walk based hole detection, we introduce an algorithm tomake simulations carried for the cycle-valuedrandom walk (k = 1) on a simplicial complex with holes. For the simplicial complexes kernels,we extend the definition of random walk based graph kernels in order to measure the similarity between two simplicial complexes
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zuffi, Lorenzo. „Simplicial Complexes From Graphs Toward Graph Persistence“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13519/.

Der volle Inhalt der Quelle
Annotation:
Persistent homology is a branch of computational topology which uses geometry and topology for shape description and analysis. This dissertation is an introductory study to link persistent homology and graph theory, the connection being represented by various methods to build simplicial complexes from a graph. The methods we consider are the complex of cliques, of independent sets, of neighbours, of enclaveless sets and complexes from acyclic subgraphs, each revealing several properties of the underlying graph. Moreover, we apply the core ideas of persistence theory in the new context of graph theory, we define the persistent block number and the persistent edge-block number.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Petersson, Anna. „Enumeration of spanning trees in simplicial complexes“. Licentiate thesis, Uppsala universitet, Matematiska institutionen, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138976.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Egan, Sarah. „Nash equilibria in games and simplicial complexes“. Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500758.

Der volle Inhalt der Quelle
Annotation:
Nash's Theorem is a famous and widely used result in non-cooperative game theory which can be applied to games where each player's mixed strategy payoff function is defined as an expectation. Current proofs of this Theorem neither justify why this constraint is necessary or satisfactorily identifies its origins. In this Thesis we change this and prove Nash's Theorem for abstract games where, in particular, the payoff functions can be replaced by total orders. The result of this is a combinatoric proof of Nash's Theorem. We also construct a generalised simplicial complex model and demonstrate a more general form of Nash's Theorem holds in this setting. This leads to the realisation Nash's Theorem is not a consequence of a fixed-point theorem but rather a combinatoric phenomenon existing in a much more general mathematical model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hetyei, Gábor. „Simplicial and cubical complexes : anologies and differences“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/32610.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Perkins, Simon. „Field D* pathfinding in weighted simplicial complexes“. Doctoral thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/6433.

Der volle Inhalt der Quelle
Annotation:
Includes abstract.
Includes bibliographical references.
The development of algorithms to efficiently determine an optimal path through a complex environment is a continuing area of research within Computer Science. When such environments can be represented as a graph, established graph search algorithms, such as Dijkstra’s shortest path and A*, can be used. However, many environments are constructed from a set of regions that do not conform to a discrete graph. The Weighted Region Problem was proposed to address the problem of finding the shortest path through a set of such regions, weighted with values representing the cost of traversing the region. Robust solutions to this problem are computationally expensive since finding shortest paths across a region requires expensive minimisation. Sampling approaches construct graphs by introducing extra points on region edges and connecting them with edges criss-crossing the region. Dijkstra or A* are then applied to compute shortest paths. The connectivity of these graphs is high and such techniques are thus not particularly well suited to environments where the weights and representation frequently change. The Field D* algorithm, by contrast, computes the shortest path across a grid of weighted square cells and has replanning capabilites that cater for environmental changes. However, representing an environment as a weighted grid (an image) is not space-efficient since high resolution is required to produce accurate paths through areas containing features sensitive to noise. In this work, we extend Field D* to weighted simplicial complexes – specifically – triangulations in 2D and tetrahedral meshes in 3D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Simplicial complexes and polytopes"

1

Jonsson, Jakob. Simplicial Complexes of Graphs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75859-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Simplicial complexes of graphs. Berlin: Springer, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rhodes, John, und Pedro V. Silva. Boolean Representations of Simplicial Complexes and Matroids. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15114-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hibi, Takayuki. Algebraic combinatorics on convex polytopes. Glebe, NSW, Australia: Carslaw Publications, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mudamburi, Nolan Jatiel Zifambi. Simplicial complexes based on automorphisms of free products. Birmingham: University of Birmingham, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chazelle, B. The complexity of cutting complexes. Urbana, Il (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ghani, Razia Parvin. Presentation of the automorphism group of free groups using simplicial complexes. Birmingham: University of Birmingham, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ashley, N. Simplicial T-complexes and crossed complexes: A non-abelian version of a theorem of Dold and Kan. Warszawa: Państwowe Wydawn. Nauk., 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

1975-, Panov Taras E., Hrsg. Toric topology. Providence, Rhode Island: American Mathematical Society, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Persistence theory: From quiver representations to data analysis. Providence, Rhode Island: American Mathematical Society, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Simplicial complexes and polytopes"

1

Hibi, Takayuki. „Ehrhart polynomials of convex polytopes, ℎ-vectors of simplicial complexes, and nonsingular projective toric varieties“. In Discrete and Computational Geometry: Papers from the DIMACS Special Year, 165–78. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/dimacs/006/09.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rhodes, John, und Pedro V. Silva. „Simplicial Complexes“. In Springer Monographs in Mathematics, 31–37. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15114-4_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rotman, Joseph J. „Simplicial Complexes“. In Graduate Texts in Mathematics, 131–79. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-4576-6_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Deo, Satya. „Simplicial Complexes“. In Texts and Readings in Mathematics, 83–122. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8734-9_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Petersen, T. Kyle. „Simplicial complexes“. In Eulerian Numbers, 163–83. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3091-3_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schmidt, Gunther, und Michael Winter. „Simplicial Complexes“. In Relational Topology, 155–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74451-3_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

McCleary, John. „Simplicial complexes“. In The Student Mathematical Library, 151–70. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/stml/031/10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rhodes, John, und Pedro V. Silva. „Paving Simplicial Complexes“. In Springer Monographs in Mathematics, 85–103. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15114-4_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Deo, Satya. „Finite Simplicial Complexes“. In Texts and Readings in Mathematics, 85–115. Gurgaon: Hindustan Book Agency, 2003. http://dx.doi.org/10.1007/978-93-86279-13-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Costa, Armindo, und Michael Farber. „Random Simplicial Complexes“. In Springer INdAM Series, 129–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31580-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Simplicial complexes and polytopes"

1

Popović, Jovan, und Hugues Hoppe. „Progressive simplicial complexes“. In the 24th annual conference. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/258734.258852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bertolotto, Michela, Leila De Floriani und Paola Marzano. „Pyramidal simplicial complexes“. In the third ACM symposium. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/218013.218054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Reddy, Thummaluru Siddartha, Sundeep Prabhakar Chepuri und Pierre Borgnat. „Clustering with Simplicial Complexes“. In 2023 31st European Signal Processing Conference (EUSIPCO). IEEE, 2023. http://dx.doi.org/10.23919/eusipco58844.2023.10289740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vergne, A., L. Decreusefond und P. Martins. „Reduction algorithm for simplicial complexes“. In IEEE INFOCOM 2013 - IEEE Conference on Computer Communications. IEEE, 2013. http://dx.doi.org/10.1109/infcom.2013.6566818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Isufi, Elvin, und Maosheng Yang. „Convolutional Filtering in Simplicial Complexes“. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9746349.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lickorish, W. B. R. „Simplicial moves on complexes and manifolds“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Preti, Giulia, Gianmarco De Francisci Morales und Francesco Bonchi. „STruD: Truss Decomposition of Simplicial Complexes“. In WWW '21: The Web Conference 2021. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3442381.3450073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sardellitti, Stefania, und Sergio Barbarossa. „Robust Signal Processing Over Simplicial Complexes“. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9746761.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sardellitti, Stefania, und Sergio Barbarossa. „Probabilistic Topological Models over Simplicial Complexes“. In 2023 57th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2023. http://dx.doi.org/10.1109/ieeeconf59524.2023.10477035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zheng, Hailun. „Face enumeration on flag complexes and flag spheres“. In Summer Workshop on Lattice Polytopes. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811200489_0028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie