Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Simplicial complexes and polytopes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Simplicial complexes and polytopes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Simplicial complexes and polytopes"
Bruns, W., und J. Gubeladze. „Combinatorial Invariance of Stanley–Reisner Rings“. gmj 3, Nr. 4 (August 1996): 315–18. http://dx.doi.org/10.1515/gmj.1996.315.
Der volle Inhalt der QuelleErokhovets, N. Yu. „Buchstaber invariant theory of simplicial complexes and convex polytopes“. Proceedings of the Steklov Institute of Mathematics 286, Nr. 1 (Oktober 2014): 128–87. http://dx.doi.org/10.1134/s008154381406008x.
Der volle Inhalt der QuellePournin, Lionel. „Lifting simplicial complexes to the boundary of convex polytopes“. Discrete Mathematics 312, Nr. 19 (Oktober 2012): 2849–62. http://dx.doi.org/10.1016/j.disc.2012.06.005.
Der volle Inhalt der QuelleJoswig, Michael. „Projectivities in simplicial complexes and colorings of simple polytopes“. Mathematische Zeitschrift 240, Nr. 2 (01.06.2002): 243–59. http://dx.doi.org/10.1007/s002090100381.
Der volle Inhalt der QuelleDeza, Michel, und Mathieu Dutour Sikirić. „Generalized cut and metric polytopes of graphs and simplicial complexes“. Optimization Letters 14, Nr. 2 (13.11.2018): 273–89. http://dx.doi.org/10.1007/s11590-018-1358-3.
Der volle Inhalt der QuelleAyzenberg, A. A. „Substitutions of polytopes and of simplicial complexes, and multigraded betti numbers“. Transactions of the Moscow Mathematical Society 74 (09.04.2014): 175–202. http://dx.doi.org/10.1090/s0077-1554-2014-00224-7.
Der volle Inhalt der QuelleSantos, Francisco. „Recent progress on the combinatorial diameter of polytopes and simplicial complexes“. TOP 21, Nr. 3 (Oktober 2013): 426–60. http://dx.doi.org/10.1007/s11750-013-0295-7.
Der volle Inhalt der QuelleBahri, Anthony, Soumen Sarkar und Jongbaek Song. „Infinite families of equivariantly formal toric orbifolds“. Forum Mathematicum 31, Nr. 2 (01.03.2019): 283–301. http://dx.doi.org/10.1515/forum-2018-0019.
Der volle Inhalt der QuelleBeben, Piotr, und Jelena Grbić. „LS-category of moment-angle manifolds and higher order Massey products“. Forum Mathematicum 33, Nr. 5 (26.08.2021): 1179–205. http://dx.doi.org/10.1515/forum-2021-0015.
Der volle Inhalt der QuelleDe Loera, Jesús A. „Comments on: Recent progress on the combinatorial diameter of polytopes and simplicial complexes“. TOP 21, Nr. 3 (Oktober 2013): 474–81. http://dx.doi.org/10.1007/s11750-013-0291-y.
Der volle Inhalt der QuelleDissertationen zum Thema "Simplicial complexes and polytopes"
Cartier, Noémie. „Lattice properties of acyclic pipe dreams“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG065.
Der volle Inhalt der QuelleThis thesis comes within the scope of algebraic combinatorics. Some sorting algorithms can be described by diagrams called sorting networks, and the execution of the algorithms on input permutations translates to arrangements of curves on the networks. These arrangements modelize some classical combinatorial structures: for example, the Tamari lattice, whose cover relations are the rotations on binary trees, and which is a well-known quotient of the weak order on permutations. Subword complexes generalize sorting network and arrangements of curves to Coxeter groups. They have deep connections in algebra and geometry, in particular in Schubert calculus, in the study of grassmannian varieties, and in the theory of cluster algebras. This thesis focuses on lattice structures on some subword complexes, generalizing Tamari lattices. More precisely, it studies the relation defined by linear extensions of the facets of a subword complex. At first we focus on subword complexes defined on a triangular word of the symmetric group, which we represent with triangular pipe dreams. We prove that this relation defines a lattice quotient of a weak order interval; moreover, we can also use this relation to define a lattice morphism from this interval to the restriction of the flip graph of the subword complex to some of its facets. Secondly, we extent our study to subword complexes defined on alternating words of the symmetric group. We prove that this same relation also defines a lattice quotient; however, the image of the associated morphism is no longer the flip graph, but the skeleton of the brick polyhedron, an object defines on subword complexes to study realizations of the multiassociahedron. Finally, we discuss possible extensions of these results to finite Coxeter groups, as well as their applications to generalize some objects defined in type A such as nu-Tamari lattices
Jonsson, Jakob. „Simplicial Complexes of Graphs“. Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202.
Der volle Inhalt der QuelleJonsson, Jakob. „Simplicial complexes of graphs /“. Berlin [u.a.] : Springer, 2008. http://dx.doi.org/10.1007/978-3-540-75858-7.
Der volle Inhalt der QuelleMirmohades, Djalal. „Simplicial Structure on Complexes“. Licentiate thesis, Uppsala universitet, Algebra och geometri, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-221410.
Der volle Inhalt der QuelleZhang, Zhihan. „Random walk on simplicial complexes“. Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM010.
Der volle Inhalt der QuelleThe notion of Laplacian of a graph can be generalized to simplicial complexes and hypergraphs. This notion contains information on the topology of these structures. In the first part of this thesis, we define a new Markov chain on simplicial complexes. For a given degree k of simplices, the state space is not thek-simplices as in previous papers about this subject but rather the set of k-chains or k-cochains.This new framework is the natural generalization on the canonical Markov chains on graphs.We show that the generator of our Markov chainis related to the upper Laplacian defined in the context of algebraic topology for discrete structure. We establish several key properties of this new process. We show that when the simplicial complexes under scrutiny are a sequence of ever refining triangulation of the flat torus, the Markov chains tend to a differential form valued continuous process.In the second part of this thesis, we explore some applications of the random walk, i.e., random walk based hole detection and simplicial complexes kernels. For the random walk based hole detection, we introduce an algorithm tomake simulations carried for the cycle-valuedrandom walk (k = 1) on a simplicial complex with holes. For the simplicial complexes kernels,we extend the definition of random walk based graph kernels in order to measure the similarity between two simplicial complexes
Zuffi, Lorenzo. „Simplicial Complexes From Graphs Toward Graph Persistence“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13519/.
Der volle Inhalt der QuellePetersson, Anna. „Enumeration of spanning trees in simplicial complexes“. Licentiate thesis, Uppsala universitet, Matematiska institutionen, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138976.
Der volle Inhalt der QuelleEgan, Sarah. „Nash equilibria in games and simplicial complexes“. Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500758.
Der volle Inhalt der QuelleHetyei, Gábor. „Simplicial and cubical complexes : anologies and differences“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/32610.
Der volle Inhalt der QuellePerkins, Simon. „Field D* pathfinding in weighted simplicial complexes“. Doctoral thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/6433.
Der volle Inhalt der QuelleIncludes bibliographical references.
The development of algorithms to efficiently determine an optimal path through a complex environment is a continuing area of research within Computer Science. When such environments can be represented as a graph, established graph search algorithms, such as Dijkstra’s shortest path and A*, can be used. However, many environments are constructed from a set of regions that do not conform to a discrete graph. The Weighted Region Problem was proposed to address the problem of finding the shortest path through a set of such regions, weighted with values representing the cost of traversing the region. Robust solutions to this problem are computationally expensive since finding shortest paths across a region requires expensive minimisation. Sampling approaches construct graphs by introducing extra points on region edges and connecting them with edges criss-crossing the region. Dijkstra or A* are then applied to compute shortest paths. The connectivity of these graphs is high and such techniques are thus not particularly well suited to environments where the weights and representation frequently change. The Field D* algorithm, by contrast, computes the shortest path across a grid of weighted square cells and has replanning capabilites that cater for environmental changes. However, representing an environment as a weighted grid (an image) is not space-efficient since high resolution is required to produce accurate paths through areas containing features sensitive to noise. In this work, we extend Field D* to weighted simplicial complexes – specifically – triangulations in 2D and tetrahedral meshes in 3D.
Bücher zum Thema "Simplicial complexes and polytopes"
Jonsson, Jakob. Simplicial Complexes of Graphs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75859-4.
Der volle Inhalt der QuelleSimplicial complexes of graphs. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle findenRhodes, John, und Pedro V. Silva. Boolean Representations of Simplicial Complexes and Matroids. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15114-4.
Der volle Inhalt der QuelleHibi, Takayuki. Algebraic combinatorics on convex polytopes. Glebe, NSW, Australia: Carslaw Publications, 1992.
Den vollen Inhalt der Quelle findenMudamburi, Nolan Jatiel Zifambi. Simplicial complexes based on automorphisms of free products. Birmingham: University of Birmingham, 1996.
Den vollen Inhalt der Quelle findenChazelle, B. The complexity of cutting complexes. Urbana, Il (1304 W. Springfield Ave., Urbana 61801): Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.
Den vollen Inhalt der Quelle findenGhani, Razia Parvin. Presentation of the automorphism group of free groups using simplicial complexes. Birmingham: University of Birmingham, 1992.
Den vollen Inhalt der Quelle findenAshley, N. Simplicial T-complexes and crossed complexes: A non-abelian version of a theorem of Dold and Kan. Warszawa: Państwowe Wydawn. Nauk., 1988.
Den vollen Inhalt der Quelle finden1975-, Panov Taras E., Hrsg. Toric topology. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenPersistence theory: From quiver representations to data analysis. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Simplicial complexes and polytopes"
Hibi, Takayuki. „Ehrhart polynomials of convex polytopes, ℎ-vectors of simplicial complexes, and nonsingular projective toric varieties“. In Discrete and Computational Geometry: Papers from the DIMACS Special Year, 165–78. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/dimacs/006/09.
Der volle Inhalt der QuelleRhodes, John, und Pedro V. Silva. „Simplicial Complexes“. In Springer Monographs in Mathematics, 31–37. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15114-4_4.
Der volle Inhalt der QuelleRotman, Joseph J. „Simplicial Complexes“. In Graduate Texts in Mathematics, 131–79. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-4576-6_8.
Der volle Inhalt der QuelleDeo, Satya. „Simplicial Complexes“. In Texts and Readings in Mathematics, 83–122. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8734-9_3.
Der volle Inhalt der QuellePetersen, T. Kyle. „Simplicial complexes“. In Eulerian Numbers, 163–83. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3091-3_8.
Der volle Inhalt der QuelleSchmidt, Gunther, und Michael Winter. „Simplicial Complexes“. In Relational Topology, 155–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74451-3_10.
Der volle Inhalt der QuelleMcCleary, John. „Simplicial complexes“. In The Student Mathematical Library, 151–70. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/stml/031/10.
Der volle Inhalt der QuelleRhodes, John, und Pedro V. Silva. „Paving Simplicial Complexes“. In Springer Monographs in Mathematics, 85–103. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15114-4_6.
Der volle Inhalt der QuelleDeo, Satya. „Finite Simplicial Complexes“. In Texts and Readings in Mathematics, 85–115. Gurgaon: Hindustan Book Agency, 2003. http://dx.doi.org/10.1007/978-93-86279-13-2_3.
Der volle Inhalt der QuelleCosta, Armindo, und Michael Farber. „Random Simplicial Complexes“. In Springer INdAM Series, 129–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31580-5_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Simplicial complexes and polytopes"
Popović, Jovan, und Hugues Hoppe. „Progressive simplicial complexes“. In the 24th annual conference. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/258734.258852.
Der volle Inhalt der QuelleBertolotto, Michela, Leila De Floriani und Paola Marzano. „Pyramidal simplicial complexes“. In the third ACM symposium. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/218013.218054.
Der volle Inhalt der QuelleReddy, Thummaluru Siddartha, Sundeep Prabhakar Chepuri und Pierre Borgnat. „Clustering with Simplicial Complexes“. In 2023 31st European Signal Processing Conference (EUSIPCO). IEEE, 2023. http://dx.doi.org/10.23919/eusipco58844.2023.10289740.
Der volle Inhalt der QuelleVergne, A., L. Decreusefond und P. Martins. „Reduction algorithm for simplicial complexes“. In IEEE INFOCOM 2013 - IEEE Conference on Computer Communications. IEEE, 2013. http://dx.doi.org/10.1109/infcom.2013.6566818.
Der volle Inhalt der QuelleIsufi, Elvin, und Maosheng Yang. „Convolutional Filtering in Simplicial Complexes“. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9746349.
Der volle Inhalt der QuelleLickorish, W. B. R. „Simplicial moves on complexes and manifolds“. In Low Dimensional Topology -- The Kirbyfest. Mathematical Sciences Publishers, 1999. http://dx.doi.org/10.2140/gtm.1999.2.299.
Der volle Inhalt der QuellePreti, Giulia, Gianmarco De Francisci Morales und Francesco Bonchi. „STruD: Truss Decomposition of Simplicial Complexes“. In WWW '21: The Web Conference 2021. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3442381.3450073.
Der volle Inhalt der QuelleSardellitti, Stefania, und Sergio Barbarossa. „Robust Signal Processing Over Simplicial Complexes“. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9746761.
Der volle Inhalt der QuelleSardellitti, Stefania, und Sergio Barbarossa. „Probabilistic Topological Models over Simplicial Complexes“. In 2023 57th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2023. http://dx.doi.org/10.1109/ieeeconf59524.2023.10477035.
Der volle Inhalt der QuelleZheng, Hailun. „Face enumeration on flag complexes and flag spheres“. In Summer Workshop on Lattice Polytopes. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811200489_0028.
Der volle Inhalt der Quelle