Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Simple graph“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Simple graph" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Simple graph"
Voorhees, Burton, und Alex Murray. „Fixation probabilities for simple digraphs“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, Nr. 2154 (08.06.2013): 20120676. http://dx.doi.org/10.1098/rspa.2012.0676.
Der volle Inhalt der QuelleTROTTA, BELINDA. „RESIDUAL PROPERTIES OF SIMPLE GRAPHS“. Bulletin of the Australian Mathematical Society 82, Nr. 3 (18.08.2010): 488–504. http://dx.doi.org/10.1017/s0004972710000420.
Der volle Inhalt der QuelleAli, Akbar. „Tetracyclic graphs with maximum second Zagreb index: A simple approach“. Asian-European Journal of Mathematics 11, Nr. 05 (Oktober 2018): 1850064. http://dx.doi.org/10.1142/s179355711850064x.
Der volle Inhalt der QuelleAbughazalah, Nabilah, Naveed Yaqoob und Asif Bashir. „Cayley Graphs over LA-Groups and LA-Polygroups“. Mathematical Problems in Engineering 2021 (10.05.2021): 1–9. http://dx.doi.org/10.1155/2021/4226232.
Der volle Inhalt der QuelleAmanto, Amanto, Notiragayu Notiragayu, La Zakaria und Wamiliana Wamiliana. „The relationship of the formulas for the number of connected vertices labeled graphs with order five and order six without loops“. Desimal: Jurnal Matematika 4, Nr. 3 (30.11.2021): 357–64. http://dx.doi.org/10.24042/djm.v4i3.10006.
Der volle Inhalt der QuelleBAHR, PATRICK. „Convergence in infinitary term graph rewriting systems is simple“. Mathematical Structures in Computer Science 28, Nr. 8 (09.08.2018): 1363–414. http://dx.doi.org/10.1017/s0960129518000166.
Der volle Inhalt der QuelleKHEIRABADI, M., und A. R. MOGHADDAMFAR. „RECOGNIZING SOME FINITE SIMPLE GROUPS BY NONCOMMUTING GRAPH“. Journal of Algebra and Its Applications 11, Nr. 04 (31.07.2012): 1250077. http://dx.doi.org/10.1142/s0219498812500776.
Der volle Inhalt der QuelleMalik, M. Aslam, und M. Khalid Mahmood. „On Simple Graphs Arising from Exponential Congruences“. Journal of Applied Mathematics 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/292895.
Der volle Inhalt der QuelleYang, Xiaocheng, Mingyu Yan, Shirui Pan, Xiaochun Ye und Dongrui Fan. „Simple and Efficient Heterogeneous Graph Neural Network“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 9 (26.06.2023): 10816–24. http://dx.doi.org/10.1609/aaai.v37i9.26283.
Der volle Inhalt der QuelleBURNESS, TIMOTHY C., und ELISA COVATO. „ON THE PRIME GRAPH OF SIMPLE GROUPS“. Bulletin of the Australian Mathematical Society 91, Nr. 2 (08.10.2014): 227–40. http://dx.doi.org/10.1017/s0004972714000707.
Der volle Inhalt der QuelleDissertationen zum Thema "Simple graph"
CRUCIANI, EMILIO. „Simple Randomized Distributed Algorithms for Graph Clustering“. Doctoral thesis, Gran Sasso Science Institute, 2019. http://hdl.handle.net/20.500.12571/9951.
Der volle Inhalt der QuelleMatos, Jody Maick Araujo de. „Graph based algorithms to efficiently map VLSI circuits with simple cells“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/174523.
Der volle Inhalt der QuelleThis thesis introduces a set of graph-based algorithms for efficiently mapping VLSI circuits using simple cells. The proposed algorithms are concerned to, first, effectively minimize the number of logic elements implementing the synthesized circuit. Then, we focus a significant effort on minimizing the number of inverters in between these logic elements. Finally, this logic representation is mapped into a circuit comprised of only two-input NANDs and NORS, along with the inverters. Two-input XORs and XNORs can also be optionally considered. As we also consider sequential circuits in this work, flip-flops are taken into account as well. Additionally, with high-effort optimization on the number of logic elements, the generated circuits may contain some cells with unfeasible fanout for current technology nodes. In order to fix these occurrences, we propose an area-oriented, level-aware algorithm for fanout limitation. The proposed algorithms were applied over a set of benchmark circuits and the obtained results have shown the usefulness of the method. We show that efficient implementations in terms of inverter count, transistor count, area, power and delay can be generated from circuits with a reduced number of both simple cells and inverters, combined with XOR/XNOR-based optimizations. The proposed buffering algorithm can handle all unfeasible fanout occurrences, while (i) optimizing the number of added inverters; and (ii) assigning cells to the inverter tree based on their level criticality. When comparing with academic and commercial approaches, we are able to simultaneously reduce the average number of inverters, transistors, area, power dissipation and delay up to 48%, 5%, 5%, 5%, and 53%, respectively. As the adoption of a limited set of simple standard cells have been showing benefits for a variety of modern VLSI circuits constraints, such as layout regularity, routability constraints, and/or ultra low power constraints, the proposed methods can be of special interest for these applications. Additionally, some More-than-Moore applications, such as printed electronics designs, can also take benefit from the proposed approach.
Bereczki, Márk. „Graph Neural Networks for Article Recommendation based on Implicit User Feedback and Content“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300092.
Der volle Inhalt der QuelleRekommendationssystem används ofta på webbplatser och applikationer för att hjälpa användare att hitta relevant innehåll baserad på deras intressen. Med utvecklingen av grafneurala nätverk nådde toppmoderna resultat inom rekommendationssystem och representerade data i form av en graf. De flesta grafbaserade lösningar har dock svårt med beräkningskomplexitet eller att generalisera till nya användare. Därför föreslår vi ett nytt grafbaserat rekommendatorsystem genom att modifiera Simple Graph Convolution. De här tillvägagångssätt är en effektiv grafnodsklassificering och lägga till möjligheten att generalisera till nya användare. Vi bygger vårt föreslagna rekommendatorsystem för att rekommendera artiklarna från Peltarion Knowledge Center. Genom att integrera två datakällor, implicit användaråterkoppling baserad på sidvisningsdata samt innehållet i artiklar, föreslår vi en hybridrekommendatörslösning. Under våra experiment jämför vi vår föreslagna lösning med en matrisfaktoriseringsmetod samt en popularitetsbaserad och en slumpmässig baslinje, analyserar hyperparametrarna i vår modell och undersöker förmågan hos vår lösning att ge rekommendationer till nya användare som inte deltog av träningsdatamängden. Vår modell resulterar i något mindre men liknande Mean Average Precision och Mean Reciprocal Rank poäng till matrisfaktoriseringsmetoden och överträffar de popularitetsbaserade och slumpmässiga baslinjerna. De viktigaste fördelarna med vår modell är beräkningseffektivitet och dess förmåga att ge relevanta rekommendationer till nya användare utan behov av omskolning av modellen, vilket är nyckelfunktioner för verkliga användningsfall.
Kaykobad, M. Tanvir. „Transforming Plane Triangulations by Simultaneous Diagonal Flips“. Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40499.
Der volle Inhalt der QuelleIslam, Md Kamrul. „Explainable link prediction in large complex graphs - application to drug repurposing“. Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0203.
Der volle Inhalt der QuelleMany real-world complex systems can be well-represented with graphs, where nodes represent objects or entities and links/relations represent interactions between pairs of nodes. Link prediction (LP) is one of the most interesting and long-standing problems in the field of graph mining; it predicts the probability of a link between two unconnected nodes based on available information in the current graph. This thesis studies the LP problem in graphs. It consists of two parts: LP in simple graphs and LP knowledge graphs (KGs). In the first part, the LP problem is defined as predicting the probability of a link between a pair of nodes in a simple graph. In the first study, a few similarity-based and embedding-based LP approaches are evaluated and compared on simple graphs from various domains. he study also criticizes the traditional way of computing the precision metric of similarity-based approaches as the computation faces the difficulty of tuning the threshold for deciding the link existence based on the similarity score. We proposed a new way of computing the precision metric. The results showed the expected superiority of embedding-based approaches. Still, each of the similarity-based approaches is competitive on graphs with specific properties. We could check experimentally that similarity-based approaches are fully explainable but lack generalization due to their heuristic nature, whereas embedding-based approaches are general but not explainable. The second study tries to alleviate the unexplainability limitation of embedding-based approaches by uncovering interesting connections between them and similarity-based approaches to get an idea of what is learned in embedding-based approaches. The third study demonstrates how the similarity-based approaches can be ensembled to design an explainable supervised LP approach. Interestingly, the study shows high LP performance for the supervised approach across various graphs, which is competitive with embedding-based approaches.The second part of the thesis focuses on LP in KGs. A KG is represented as a collection of RDF triples, (head,relation,tail) where the head and the tail are two entities which are connected by a specific relation. The LP problem in a KG is formulated as predicting missing head or tail entities in a triple. LP approaches based on the embeddings of entities and relations of a KG have become very popular in recent years, and generating negative triples is an important task in KG embedding methods. The first study in this part discusses a new method called SNS to generate high-quality negative triples during the training of embedding methods for learning embeddings of KGs. The results we produced show better LP performance when SNS is injected into an embedding approach than when injecting state-of-the-art negative triple sampling methods. The second study in the second part discusses a new neuro-symbolic method of mining rules and an abduction strategy to explain LP by an embedding-based approach utilizing the learned rules. The third study applies the explainable LP to a COVID-19 KG to develop a new drug repurposing approach for COVID-19. The approach learns ”ensemble embeddings” of entities and relations in a COVID-19 centric KG, in order to get a better latent representation of the graph elements. For the first time to our knowledge, molecular docking is then used to evaluate the predictions obtained from drug repurposing using KG embedding. Molecular evaluation and explanatory paths bring reliability to prediction results and constitute new complementary and reusable methods for assessing KG-based drug repurposing. The last study proposes a distributed architecture for learning KG embeddings in distributed and parallel settings. The results of the study that the computational time of embedding methods improves remarkably without affecting LP performance when they are trained in the proposed distributed settings than the traditional centralized settings
Lehbab, Imène. „Problèmes métriques dans les espaces de Grassmann“. Electronic Thesis or Diss., Mulhouse, 2023. http://www.theses.fr/2023MULH6508.
Der volle Inhalt der QuelleThis work contributes to the field of metric geometry of the complex projective plane CP2 and the real Grassmannian manifold of the planes in R6. More specifically, we study all p-tuples, p ≥ 3, of equiangular lines in C3 or equidistant points in CP2, and p-tuples of equi-isoclinic planes in R6. Knowing that 9 is the maximum number of equiangular lines that can be constructed in C3, we develop a method to obtain all p-tuples of equiangular lines for all p ϵ [3,9]. In particular, we construct in C3 five congruence classes of quadruples of equiangular lines, one of which depends on a real parameter ɣ, which we extend to an infinite family of sextuples of equiangular lines depending on the same real parameter ɣ. In addition, we give the angles for which our sextuples extend beyond and up to 9-tuples. We know that there exists a p-tuple, p ≥ 3, of equi-isoclinic planes generating Rr, r ≥ 4, with parameter c, 0< c <1, if and only if there exists a square symmetric matrix, called Seidel matrix, of p × p square blocks of order 2, whose diagonal blocks are all zero and the others are orthogonal matrices in O(2) and whose smallest eigenvalue is equal to - 1/c and has multiplicity 2p-r. In this thesis, we investigate the case r=6 and we also show that we can explicitly determine the spectrum of all Seidel matrices of order 2p, p ≥ 3 whose off-diagonal blocks are in {R0, S0} where R0 and S0 are respectively the zero-angle rotation and the zero-angle symmetry. We thus show an unexpected link between some p-tuples of equi-isoclinic planes in Rr and simple graphs of order p
Montanaro, William M. Jr. „Character Degree Graphs of Almost Simple Groups“. Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1398345504.
Der volle Inhalt der QuelleSoames, Kieron, und Jonas Lind. „Detecting Cycles in GraphQL Schemas“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156174.
Der volle Inhalt der QuelleYan, Chenyu. „APPROXIMATING DISTANCES IN COMPLICATED GRAPHS BY DISTANCES IN SIMPLE GRAPHS WITH APPLICATIONS“. Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1184639623.
Der volle Inhalt der QuelleOkeke, Nnamdi, und University of Lethbridge Faculty of Arts and Science. „Character generators and graphs for simple lie algebras“. Thesis, Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2006, 2006. http://hdl.handle.net/10133/532.
Der volle Inhalt der Quellevii, 92 leaves ; 29 cm.
Bücher zum Thema "Simple graph"
Haviar, Miroslav. Vertex labellings of simple graphs. Lemgo, Germany: Heldermann Verlag, 2015.
Den vollen Inhalt der Quelle findenBooth, Bob. Simple use of Cricket Graph for PC Windows. Sheffield: University of Sheffield, Academic Computing Services, 1992.
Den vollen Inhalt der Quelle findenJerrum, Mark. A very simple algorithm for estimating the numberof k-colourings of a low-degree graph. Edinburgh: LFCS, Dept. of Computer Science, University of Edinburgh, 1994.
Den vollen Inhalt der Quelle findenPraeger, Cheryl E. Low rank representations and graphs for sporadic groups. Cambridge [England]: Cambridge University Press, 1997.
Den vollen Inhalt der Quelle findenPraeger, Cheryl E. Low rank representations and graphs for sporadic groups. New York: Cambridge University Press, 1996.
Den vollen Inhalt der Quelle findenDearing, P. M. Boolean and graph theoretic formulation of the simple plant location problem. Monterey, Calif: Naval Postgraduate School, 1987.
Den vollen Inhalt der Quelle findenFREEBERG, ERLING, und DOLORES FREEBERG. Simple Graph Art. Teacher Created Resources, 2004.
Den vollen Inhalt der Quelle findenPancer, Richard Norman. GED - a graph EDitor for labelled simple directed acyclic graphs. 1985.
Den vollen Inhalt der Quelle findenBOOK, Modo. Notebook Isometric Graph: Simple Isometric Graph Paper Notebook - 110 Pages. Independently Published, 2021.
Den vollen Inhalt der Quelle findenpress, isometric. Isometric Graph Paper: Simple Isometric Graph Paper Notebook - 110 Pages. Independently Published, 2021.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Simple graph"
Hougardy, Stefan, und Jens Vygen. „Simple Graph Algorithms“. In Algorithmic Mathematics, 85–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39558-6_7.
Der volle Inhalt der QuelleBrandes, Ulrik, und Boris Köpf. „Fast and Simple Horizontal Coordinate Assignment“. In Graph Drawing, 31–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45848-4_3.
Der volle Inhalt der QuelleBarth, Wilhelm, Michael Jünger und Petra Mutzel. „Simple and Efficient Bilayer Cross Counting“. In Graph Drawing, 130–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36151-0_13.
Der volle Inhalt der QuelleFairbairn, Jon. „A simple abstract machine to execute supercombinators“. In Graph Reduction, 49–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-18420-1_49.
Der volle Inhalt der QuelleMamakani, Khalegh, und Frank Ruskey. „The First Simple Symmetric 11-Venn Diagram“. In Graph Drawing, 563–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2_54.
Der volle Inhalt der QuelleDaescu, Ovidiu, und Jun Luo. „Computing Simple Paths on Points in Simple Polygons“. In Computational Geometry and Graph Theory, 41–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89550-3_5.
Der volle Inhalt der QuelleBekos, Michael A., und Chrysanthi N. Raftopoulou. „Circle-Representations of Simple 4-Regular Planar Graphs“. In Graph Drawing, 138–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36763-2_13.
Der volle Inhalt der QuelleKaugars, Karlis, Juris Reinfelds und Alvis Brazma. „A simple algorithm for drawing large graphs on small screens“. In Graph Drawing, 278–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-58950-3_382.
Der volle Inhalt der QuelleForster, Michael. „A Fast and Simple Heuristic for Constrained Two-Level Crossing Reduction“. In Graph Drawing, 206–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31843-9_22.
Der volle Inhalt der QuelleKynčl, Jan, und Pavel Valtr. „On Edges Crossing Few Other Edges in Simple Topological Complete Graphs“. In Graph Drawing, 274–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11618058_25.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Simple graph"
Wu, Junran, Shangzhe Li, Jianhao Li, Yicheng Pan und Ke Xu. „A Simple yet Effective Method for Graph Classification“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/497.
Der volle Inhalt der QuellePho, Patrick, und Alexander V. Mantzaris. „Link prediction with Simple Graph Convolution and regularized Simple Graph Convolution“. In ICISDM 2022: 2022 the 6th International Conference on Information System and Data Mining. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3546157.3546163.
Der volle Inhalt der QuelleAbdelmoneum, Farida, John Shi und José M. F. Moura. „Graph Classification via Simple Graph Based Features“. In 2023 57th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2023. http://dx.doi.org/10.1109/ieeeconf59524.2023.10477007.
Der volle Inhalt der QuelleSchramm, Simon. „Constructing the Simple Timeseries Event Model“. In 2023 IEEE International Conference on Knowledge Graph (ICKG). IEEE, 2023. http://dx.doi.org/10.1109/ickg59574.2023.00022.
Der volle Inhalt der QuelleLi, Pengyong, Jun Wang, Ziliang Li, Yixuan Qiao, Xianggen Liu, Fei Ma, Peng Gao, Sen Song und Guotong Xie. „Pairwise Half-graph Discrimination: A Simple Graph-level Self-supervised Strategy for Pre-training Graph Neural Networks“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/371.
Der volle Inhalt der QuelleDhurandhar, Amit, und Tejaswini Pedapati. „Multihop: Leveraging Complex Models to Learn Accurate Simple Models“. In 2022 IEEE International Conference on Knowledge Graph (ICKG). IEEE, 2022. http://dx.doi.org/10.1109/ickg55886.2022.00014.
Der volle Inhalt der QuelleClick, Cliff, und Michael Paleczny. „A simple graph-based intermediate representation“. In Papers from the 1995 ACM SIGPLAN workshop. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/202529.202534.
Der volle Inhalt der QuelleZatesko, Leandro M., Renato Carmo und André L. P. Guedes. „Novel Procedures for Graph Edge-colouring“. In XXXII Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/ctd.2019.6331.
Der volle Inhalt der QuelleWang, Huijuan, Siming Dai, Weiyue Su, Hui Zhong, Zeyang Fang, Zhengjie Huang, Shikun Feng, Zeyu Chen, Yu Sun und Dianhai Yu. „Simple and Effective Relation-based Embedding Propagation for Knowledge Representation Learning“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/382.
Der volle Inhalt der QuelleTu, Wenxuan, Sihang Zhou, Xinwang Liu, Yue Liu, Zhiping Cai, En Zhu, Changwang Zhang und Jieren Cheng. „Initializing Then Refining: A Simple Graph Attribute Imputation Network“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/485.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Simple graph"
Green, Alastair, Paolo Guagliardo und Leonid Libkin. Property graphs and paths in GQL: Mathematical definitions. Linked Data Benchmark Council, Oktober 2021. http://dx.doi.org/10.54285/ldbc.tzjp7279.
Der volle Inhalt der QuelleStriuk, Andrii, Olena Rybalchenko und Svitlana Bilashenko. Development and Using of a Virtual Laboratory to Study the Graph Algorithms for Bachelors of Software Engineering. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4462.
Der volle Inhalt der QuellePinzon, Mauricio, und Arturo Galindo. Revelation of Expectations in Latin America (REVELA): No. 17 : September, 2008. Inter-American Development Bank, September 2008. http://dx.doi.org/10.18235/0008250.
Der volle Inhalt der QuelleGalindo, Arturo, und Mauricio Pinzon. Revelation of Expectations in Latin America (REVELA): No. 23 : March, 2009. Inter-American Development Bank, März 2009. http://dx.doi.org/10.18235/0008255.
Der volle Inhalt der QuelleSalazni, Mariana, Andrew Powell, Mauricio Pinzon und Arturo Galindo. Revelation of Expectations in Latin America (REVELA): No. 16 : August, 2008. Inter-American Development Bank, August 2008. http://dx.doi.org/10.18235/0008249.
Der volle Inhalt der QuellePinzon, Mauricio, und Arturo Galindo. Revelation of Expectations in Latin America (REVELA): No. 21 : January, 2009. Inter-American Development Bank, Januar 2009. http://dx.doi.org/10.18235/0008253.
Der volle Inhalt der QuellePinzon, Mauricio, und Arturo Galindo. Revelation of Expectations in Latin America (REVELA): No. 20 : December, 2008. Inter-American Development Bank, Dezember 2008. http://dx.doi.org/10.18235/0008252.
Der volle Inhalt der QuellePinzon, Mauricio, und Arturo Galindo. Revelation of Expectations in Latin America (REVELA): No. 18 : October, 2008. Inter-American Development Bank, Oktober 2008. http://dx.doi.org/10.18235/0008251.
Der volle Inhalt der QuelleGalindo, Arturo, und Mauricio Pinzon. Revelation of Expectations in Latin America (REVELA): No. 22 : February, 2009. Inter-American Development Bank, Februar 2009. http://dx.doi.org/10.18235/0008254.
Der volle Inhalt der QuelleSondheim, M., und C. Hodgson. Common hydrology features (CHyF) logical model. Natural Resources Canada/CMSS/Information Management, 2024. http://dx.doi.org/10.4095/328952.
Der volle Inhalt der Quelle