Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Silicone soft robots“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Silicone soft robots" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Silicone soft robots"
Lin, Hao, Yihui Chen und Wei Tang. „Soft Electrohydraulic Bending Actuators for Untethered Underwater Robots“. Actuators 13, Nr. 6 (08.06.2024): 214. http://dx.doi.org/10.3390/act13060214.
Der volle Inhalt der QuelleWu, Huaqing, Yutong Han, Xinyu Chen, Rong Lu, Erxing Zhuang, Huaping Wu, Xiaodi Jiang, Xiaojun Tan und Bo Cao. „Design, Fabrication, and Characterization of a Novel Crawling Pneumatic Soft Robot“. Automation 6, Nr. 1 (12.02.2025): 7. https://doi.org/10.3390/automation6010007.
Der volle Inhalt der QuelleSun, Hao, Bin Cheng, Ning Yang Wang und Xiao Ping Chen. „A Preliminary Study of the HPN Robot“. Applied Mechanics and Materials 575 (Juni 2014): 726–30. http://dx.doi.org/10.4028/www.scientific.net/amm.575.726.
Der volle Inhalt der QuelleXu, Ruomeng, und Qingsong Xu. „Design of a Bio-Inspired Untethered Soft Octopodal Robot Driven by Magnetic Field“. Biomimetics 8, Nr. 3 (22.06.2023): 269. http://dx.doi.org/10.3390/biomimetics8030269.
Der volle Inhalt der QuelleJyothi, Mrs N. Krishna. „Plucking Flowers using Soft Robot“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 11 (30.11.2023): 575–79. http://dx.doi.org/10.22214/ijraset.2023.56490.
Der volle Inhalt der QuelleRibuan, Mohamed Najib, Shuichi Wakimoto, Koichi Suzumori und Takefumi Kanda. „Omnidirectional Soft Robot Platform with Flexible Actuators for Medical Assistive Device“. International Journal of Automation Technology 10, Nr. 4 (05.07.2016): 494–502. http://dx.doi.org/10.20965/ijat.2016.p0494.
Der volle Inhalt der QuelleGarcía-Samartín, Jorge Francisco, Adrián Rieker und Antonio Barrientos. „Design, Manufacturing, and Open-Loop Control of a Soft Pneumatic Arm“. Actuators 13, Nr. 1 (17.01.2024): 36. http://dx.doi.org/10.3390/act13010036.
Der volle Inhalt der QuelleWang, Jie, Haoyu Zhou, Yong Gao, Yupeng Xie, Jing Zhang, Yaocheng Hu, Dengwang Wang et al. „The Characterization of Silicone-Tungsten-Based Composites as Flexible Gamma-Ray Shields“. Materials 14, Nr. 20 (11.10.2021): 5970. http://dx.doi.org/10.3390/ma14205970.
Der volle Inhalt der QuelleLi, Junfeng, Songyu Chen und Minjie Sun. „Design and fabrication of a crawling robot based on a soft actuator“. Smart Materials and Structures 30, Nr. 12 (09.11.2021): 125018. http://dx.doi.org/10.1088/1361-665x/ac2e1b.
Der volle Inhalt der QuelleSui, Xin, Mingzhu Lai, Jian Qi, Zhiyuan Yang, Ning Zhao, Jie Zhao, Hegao Cai und Yanhe Zhu. „A Fluid-Driven Loop-Type Modular Soft Robot with Integrated Locomotion and Manipulation Capability“. Biomimetics 8, Nr. 5 (26.08.2023): 390. http://dx.doi.org/10.3390/biomimetics8050390.
Der volle Inhalt der QuelleDissertationen zum Thema "Silicone soft robots"
Kraehn, Baptiste. „Approche intégrée matériau-procédé appliquée à la conception de doigts souples pour la manipulation dextre“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD042.
Der volle Inhalt der QuelleThis thesis proposes an integrated approach to the design of pneumatic silicone fingers for dexterous manipulation. Based on a comparative approach between experimentation and numerical prediction, the identification of silicone behavioral models allows the prediction of pneumatic finger behavior. The design is then guided by simulation with the aim of reducing the finger's dependence on the Mullins effect. The chosen manufacturing method, low-pressure injection molding, allows a robust overmolding process for the rigid reinforcements and the base of the finger. The finger and tooling are designed to enable production of the complete assembly in a single injection step
Mosser, Loïc. „Contribution à la conception et la fabrication de robots souples pneumatiques“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD009.
Der volle Inhalt der QuelleThis thesis covers the design of pneumatic soft robots, which move thanks to deformation using pneumatic chambers. We contribute to the design of a robot from the formulation of the need to the manufacturing of the robot. We address the problems associated with the design and manufacture of these robots. For design, we propose a genetic algorithm accelerated by the use of an AI model enabling rapid estimation of the behavior of new geometries and the search for solutions. For manufacturing, we propose an instrumented silicone additive manufacturing platform enabling the acquisition of point clouds on each produced layer. Indicators are then proposed to monitor ongoing production and the integrity of soft robots, and these indicators are evaluated experimentally
Santos, João Guilherme Alves dos. „Bio-inspired robotic gripper with hydrogel-silicone soft skin and 3d printed endoskeleton“. Master's thesis, 2017. http://hdl.handle.net/10316/82840.
Der volle Inhalt der QuelleNeste projeto, desenvolve-se um dedo inovador e inspirado biologicamente, com fisiologia semelhante à de um dedo humano. O dedo "soft" é feito com um núcleo impresso em 3D para substituir o endoesqueleto dos dedos humanos, com uma pele elástica de silicone para substituir a camada epidérmica elástica e resiliente e um enchimento de hidrogel para substituir a camada dérmica. No dedo humano, a camada dérmica é mais macia do que a camada epidérmica e contém uma quantidade considerável de água, portanto, deve ser protegida pela camada epidérmica, que é mais resistente. Esta não só protege a camada subjacente do desgaste mecânico, mas também fornece uma barreira contra a perda de água. Por outro lado, a camada dérmica, ao ser mais suave, ajuda numa melhor adaptação local da pele para agarrar os objectos eficientemente. A camada epidérmica de silicone destina-se a ser elástica, maleável e protege o hidrogel de maneira que este não perca água ao longo do tempo. O enchimento de hidrogel do dedo é feito de poliacrilato de sódio e água destilada; o material utilizado como silicone é Ecoflex 00-30 e o endoesqueleto do dedo é feito de acrilonitrilo butadina estireno (ABS).Também foi desenvolvido um protótipo de baixo custo de uma pinça sub-atuada integrando três destes dedos. Tem um mecanismo baseado nos "push base toys" e foi inteiramente impresso numa impressora "fusion deposition modelling" (FDM) com material ácido poliláctico (PLA). Um único motor acciona o sistema puxando para cima e para baixo os tendões que estão integrados nos dedos, forçando-os abrir ou fechar, com o propósito de agarrar ou soltar objetos.Os dedos foram primeiramente testados individualmente. A força necessária para a flexão total dos dedos foi medida e comparada com uma versão anterior do dedo que contém apenas a camada epidérmica sem a camada dérmica de hidrogel. Os resultados mostram uma melhora na redução da força necessária para a flexão. Também a pinça integrada com a nova versão dos dedos foi desenvolvida e testada para agarrar vários objectos incluindo frutas macias.No final da dissertação, alguns ensaios de \textit{pick and place} são analisados e é concluído que foi conseguido um dedo "soft" óptimo que pode ser usado em pinças e próteses. Apesar do seu excelente desempenho, o preço geral dos materias usados para a pinça robótica desenvolvida nesta dissertação é de 15 Euros, incluindo o actuador. Também é apresentado trabalho futuro tanto para a pinça como para o dedo "soft".
On this project, an innovative and bio-inspired finger is developed, resembling the physiology of a biological human finger. The soft finger is made of a 3D-printed core to substitute the fingers’ endoskeleton, a silicon elastomer skin to substitute the elastic and resilient epidermal layer and a hydrogel filling to substitute the dermal layer. The dermal layer in human finger is softer than the epidermal layer and contains a considerable amount of water, and therefore should be protected by the more resilient epidermal layer, that not only protects the underlying layer from mechanical wear, but it also provides a barrier against losing the water. On the other hand, the softer dermal layer helps in better local adaptation of the skin to objects for efficient grasping. The silicone epidermal layer is intended to be elastic, malleable and protects the hydrogel from losing water over the time. The hydrogel filling of the finger is made from sodium polyacrylate (SPA) and distilled water; the material used as the silicone is Ecoflex 00-30 and the finger core is made of acrylonitrile butadine styrene (ABS).A low-cost prototype of an under-actuated gripper was also developed integrating three of these fingers. It has a mechanism based on the push base toys and it was fully printed on a fusion deposition modelling (FDM) printed with polylactic acid material (PLA). A single motor actuates the system by pulling up and down the tendons that are integrated in the fingers, making them open or close, in order to grip or drop objects.Fingers were tested first individually.The required force for full flexion of the fingers were measured and compared to a previous version of the finger that contains only the epidermal layer without containing the hydrogel dermal layer. Results show an improvement in reduction of the required force for flexion. Also the integrated gripper with the new version of the fingers were developed and tested for grasping several objects including soft fruits.At the end of the dissertation, some gripping tests are analysed and concluding that was achieved an optimal soft finger that can be used in grippers and prosthesis. Despite its excellent performance, the overall bill of materials of the full gripper developed in this dissertation is 15 Euros, including the actuator. Also future work is presented both for the gripper and the soft finger.
Buchteile zum Thema "Silicone soft robots"
Dawood, Abu Bakar, Hareesh Godaba und Kaspar Althoefer. „Silicone Based Capacitive E-Skin Sensor for Soft Surgical Robots“. In Towards Autonomous Robotic Systems, 62–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63486-5_8.
Der volle Inhalt der QuelleShiva, Ali, Agostino Stilli, Yohan Noh, Angela Faragasso, Iris De Falco, Giada Gerboni, Matteo Cianchetti, Arianna Menciassi, Kaspar Althoefer und Helge A. Wurdemann. „Antagonistic Actuation Principle for a Silicone-based Soft Manipulator“. In Soft and Stiffness-controllable Robotics Solutions for Minimally Invasive Surgery, 65–78. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339588-5.
Der volle Inhalt der QuelleWang, Si-Yuan Rylan. „Soft Pneumatic Robotic Architectural System: Prefabricated Inflatable Module-Based Cybernetic Adaptive Space Model Manipulated Through Human-System Interaction“. In Computational Design and Robotic Fabrication, 453–65. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8637-6_39.
Der volle Inhalt der QuelleGil, Antonio J., Rogelio Ortigosa, Jesus Martínez-Frutos und Nathan Ellmer. „In-silico Design and Computational Modelling of Electroactive Polymer Based Soft Robotics“. In Towards Autonomous Robotic Systems, 81–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15908-4_7.
Der volle Inhalt der QuelleEsser, Falk, Friederike Krüger, Tom Masselter und Thomas Speck. „Development and Characterization of a Novel Biomimetic Peristaltic Pumping System with Flexible Silicone-Based Soft Robotic Ring Actuators“. In Biomimetic and Biohybrid Systems, 157–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95972-6_17.
Der volle Inhalt der QuelleEsser, Falk, Friederike Krüger, Tom Masselter und Thomas Speck. „Characterization of Biomimetic Peristaltic Pumping System Based on Flexible Silicone Soft Robotic Actuators as an Alternative for Technical Pumps“. In Biomimetic and Biohybrid Systems, 101–13. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24741-6_9.
Der volle Inhalt der Quelleİlman, Mehmet Mert, und Hamza Taş. „A Soft Robotic Gripper Material Study“. In Design and Control Advances in Robotics, 60–73. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5381-0.ch004.
Der volle Inhalt der QuelleRanjbar, Sadegh, Mohammad Lakhi, Mahdi Bodaghi, Morteza Sayah Irani und Ali Zolfagharian. „Silicone elastomer soft robots via 4D printing“. In Smart Materials in Additive Manufacturing Volume 3, 167–201. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-443-13673-3.00007-9.
Der volle Inhalt der QuelleLiu, Yibo, Huaping Xiao und Shuhai Liu. „Dexterous Soft Robotic Hand with Active Palm Structure“. In Advances in Transdisciplinary Engineering. IOS Press, 2024. https://doi.org/10.3233/atde241252.
Der volle Inhalt der QuelleNatarajan, Elango, Muhammad Rusydi Muhammad Razif, AAM Faudzi und Palanikumar K. „Evaluation of a Suitable Material for Soft Actuator Through Experiments and FE Simulations“. In Research Anthology on Cross-Disciplinary Designs and Applications of Automation, 339–53. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3694-3.ch018.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Silicone soft robots"
Xiao, Fei, Zhuoheng Wei, Hao Wang, Jisen Li und Jian Zhu. „Embedded 3D Printing of Silicone for Soft Actuator with Stiffness Gradient and Programmable Workspace“. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 10913–18. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801545.
Der volle Inhalt der QuelleBaysa, Matthew, Noah Turoski, Manilyn Cabrera und Yen-Lin Han. „“EXTENSOR” SOFT ROBOT FOR CLENCHED FIST REHABILITATION AFTER STROKE“. In 2023 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/dmd2023-4176.
Der volle Inhalt der QuelleWeigand, Felix, Anh Minh Nguyen, Jan Wolff und Arthur Seibel. „Toward Industrial Silicone 3D Printing of Soft Robots“. In 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021. http://dx.doi.org/10.1109/robosoft51838.2021.9479196.
Der volle Inhalt der QuelleRajendran, Sunil Kumar, und Feitian Zhang. „Learning Based Speed Control of Soft Robotic Fish“. In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-8977.
Der volle Inhalt der QuelleHarris, Hannah, Adia Radecka, Raefa Malik, Roberto Alonso Pineda Guzman, Jeffrey Santoso, Alyssa Bradshaw, Megan McCain, Mariana Kersh und Holly Golecki. „Development and Characterization of Biostable Hydrogel Robotic Actuators for Implantable Devices: Tendon Actuated Gelatin“. In 2022 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/dmd2022-1049.
Der volle Inhalt der QuellePai, Nikhil, Andrea Contreras Esquen, Coskun Tekes, Amir Ali Amiri Moghadam und Ayse Tekes. „Design and Development of a Fish-Like, Soft Biomimetic Robot“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94635.
Der volle Inhalt der QuelleYi Sun, Yun Seong Song und Jamie Paik. „Characterization of silicone rubber based soft pneumatic actuators“. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013). IEEE, 2013. http://dx.doi.org/10.1109/iros.2013.6696995.
Der volle Inhalt der QuelleKunze, Julian, Giovanni Soleti, Daniel Bruch, Gianluca Rizzello und Paul Motzki. „Design and Demonstration of a 3D Soft-Robotics Module Based on Rolled Dielectric Elastomer Actuators (RDEAs)“. In ASME 2024 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/smasis2024-139481.
Der volle Inhalt der QuelleZheng, G., O. Goury, M. Thieffry, A. Kruszewski und C. Duriez. „Controllability pre-verification of silicone soft robots based on finite-element method“. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8794370.
Der volle Inhalt der QuelleYirmibesoglu, Osman Dogan, John Morrow, Steph Walker, Walker Gosrich, Reece Canizares, Hansung Kim, Uranbileg Daalkhaijav, Chloe Fleming, Callie Branyan und Yigit Menguc. „Direct 3D printing of silicone elastomer soft robots and their performance comparison with molded counterparts“. In 2018 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2018. http://dx.doi.org/10.1109/robosoft.2018.8404935.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Silicone soft robots"
Diaz Armas, Nathalia, Shilpa Thakur, Jinde Zhang, Geet Bhandari, Sevil Turkoglu, Drupad Kadiyala Bhavani, Pratap M. Rao, Cagdas D. Onal und Joey Mead. Braided Composite System with Haptic Feedback for Teleoperation. Universidad de los Andes, Dezember 2024. https://doi.org/10.51573/andes.pps39.gs.pc.3.
Der volle Inhalt der Quelle